Abstract

Here we present two-dimensional (2D) electronic spectra of the light-harvesting complex LH2 from purple bacteria using coherent pulses with bandwidth of over 100nm FWHM. This broadband excitation and detection has allowed the simultaneous capture of both the B800 and B850 bands using a single light source. We demonstrate that one laser pulse is sufficient to capture the entire 2D electronic spectrum with a high signal-to-noise ratio. At a waiting time of 800fs, we observe population transfer from the B800 to B850 band as manifested by a prominent cross peak. These results will enable observation of the dynamics of biological systems across both ultrafast (<1ps) and slower (>1ms) timescales simultaneously.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
    [CrossRef]
  2. M. Maroncelli, J. Macinnis, and G. R. Fleming, Science 243, 1674 (1989).
    [CrossRef] [PubMed]
  3. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  4. T. Brixner, I. V. Stiopkin, and G. R. Fleming, Opt. Lett. 29, 884 (2004).
    [CrossRef] [PubMed]
  5. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
    [CrossRef]
  6. J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
    [CrossRef]
  7. P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
    [CrossRef] [PubMed]
  8. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, Opt. Lett. 30, 323 (2005).
    [CrossRef] [PubMed]
  9. T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
    [CrossRef] [PubMed]
  10. F. Ding, P. Mukherjee, and M. T. Zanni, Opt. Lett. 31, 2918 (2006).
    [CrossRef] [PubMed]
  11. V. Volkov, R. Schanz, and P. Hamm, Opt. Lett. 30, 2010(2005).
    [CrossRef] [PubMed]
  12. E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010).
    [CrossRef] [PubMed]
  13. R. J. Cogdell, A. Gall, and J. Kohler, Q. Rev. Biophys. 39, 227 (2006).
    [CrossRef] [PubMed]
  14. E. Harel, A. F. Fidler, and G. S. Engel, J. Phys. Chem. A 115, 3787 (2011).
    [CrossRef]
  15. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  16. H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
    [CrossRef]
  17. A. Freiberg, V. I. Godik, T. Pullerits, and K. Timpmann, Chem. Phys. 128, 227 (1988).
    [CrossRef]

2011 (1)

E. Harel, A. F. Fidler, and G. S. Engel, J. Phys. Chem. A 115, 3787 (2011).
[CrossRef]

2010 (1)

E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010).
[CrossRef] [PubMed]

2006 (2)

R. J. Cogdell, A. Gall, and J. Kohler, Q. Rev. Biophys. 39, 227 (2006).
[CrossRef] [PubMed]

F. Ding, P. Mukherjee, and M. T. Zanni, Opt. Lett. 31, 2918 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, Opt. Lett. 29, 884 (2004).
[CrossRef] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
[CrossRef]

2003 (1)

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

2001 (1)

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
[CrossRef]

1995 (1)

1994 (1)

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

1989 (1)

M. Maroncelli, J. Macinnis, and G. R. Fleming, Science 243, 1674 (1989).
[CrossRef] [PubMed]

1988 (1)

A. Freiberg, V. I. Godik, T. Pullerits, and K. Timpmann, Chem. Phys. 128, 227 (1988).
[CrossRef]

1987 (1)

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Brixner, T.

T. Brixner, I. V. Stiopkin, and G. R. Fleming, Opt. Lett. 29, 884 (2004).
[CrossRef] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

Chadwick, B. W.

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Cheriaux, G.

Cogdell, R. J.

R. J. Cogdell, A. Gall, and J. Kohler, Q. Rev. Biophys. 39, 227 (2006).
[CrossRef] [PubMed]

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
[CrossRef]

Ding, F.

Engel, G. S.

E. Harel, A. F. Fidler, and G. S. Engel, J. Phys. Chem. A 115, 3787 (2011).
[CrossRef]

E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010).
[CrossRef] [PubMed]

Ferro, A. A.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
[CrossRef]

Feurer, T.

Fidler, A. F.

E. Harel, A. F. Fidler, and G. S. Engel, J. Phys. Chem. A 115, 3787 (2011).
[CrossRef]

E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010).
[CrossRef] [PubMed]

Fleming, G. R.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, Opt. Lett. 29, 884 (2004).
[CrossRef] [PubMed]

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

M. Maroncelli, J. Macinnis, and G. R. Fleming, Science 243, 1674 (1989).
[CrossRef] [PubMed]

Frank, H. A.

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Freiberg, A.

A. Freiberg, V. I. Godik, T. Pullerits, and K. Timpmann, Chem. Phys. 128, 227 (1988).
[CrossRef]

Gall, A.

R. J. Cogdell, A. Gall, and J. Kohler, Q. Rev. Biophys. 39, 227 (2006).
[CrossRef] [PubMed]

Godik, V. I.

A. Freiberg, V. I. Godik, T. Pullerits, and K. Timpmann, Chem. Phys. 128, 227 (1988).
[CrossRef]

Gust, D.

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Hamm, P.

Harel, E.

E. Harel, A. F. Fidler, and G. S. Engel, J. Phys. Chem. A 115, 3787 (2011).
[CrossRef]

E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010).
[CrossRef] [PubMed]

Hornung, T.

Hybl, J. D.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
[CrossRef]

Jimenez, R.

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

Joffre, M.

Jonas, D. M.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
[CrossRef]

Keusters, D.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Kohler, J.

R. J. Cogdell, A. Gall, and J. Kohler, Q. Rev. Biophys. 39, 227 (2006).
[CrossRef] [PubMed]

Kumar, P. V.

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

Lepetit, L.

Liddell, P. A.

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Macinnis, J.

M. Maroncelli, J. Macinnis, and G. R. Fleming, Science 243, 1674 (1989).
[CrossRef] [PubMed]

Makings, L. R.

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Mancal, T.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

Maroncelli, M.

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

M. Maroncelli, J. Macinnis, and G. R. Fleming, Science 243, 1674 (1989).
[CrossRef] [PubMed]

Miller, R. J. D.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
[CrossRef]

Moore, A. L.

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Moore, T. A.

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).

Mukherjee, P.

Nelson, K. A.

Ogilvie, J. P.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
[CrossRef]

Oh, J. J.

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Pullerits, T.

A. Freiberg, V. I. Godik, T. Pullerits, and K. Timpmann, Chem. Phys. 128, 227 (1988).
[CrossRef]

Schanz, R.

Stiopkin, I. V.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, Opt. Lett. 29, 884 (2004).
[CrossRef] [PubMed]

Suzaki, Y.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Tian, P. F.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Timpmann, K.

A. Freiberg, V. I. Godik, T. Pullerits, and K. Timpmann, Chem. Phys. 128, 227 (1988).
[CrossRef]

Vaughan, J. C.

Volkov, V.

Warren, W. S.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Zanni, M. T.

Biochim. Biophys. Acta, Mol. Basis Dis. (1)

H. A. Frank, B. W. Chadwick, J. J. Oh, D. Gust, T. A. Moore, P. A. Liddell, A. L. Moore, L. R. Makings, and R. J. Cogdell, Biochim. Biophys. Acta, Mol. Basis Dis. 892, 253 (1987).
[CrossRef]

Chem. Phys. (1)

A. Freiberg, V. I. Godik, T. Pullerits, and K. Timpmann, Chem. Phys. 128, 227 (1988).
[CrossRef]

Chem. Phys. Lett. (1)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184 (2004).
[CrossRef]

J. Chem. Phys. (2)

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
[CrossRef]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

E. Harel, A. F. Fidler, and G. S. Engel, J. Phys. Chem. A 115, 3787 (2011).
[CrossRef]

Nature (1)

R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature 369, 471 (1994).
[CrossRef]

Opt. Lett. (4)

Proc. Natl. Acad. Sci. USA (1)

E. Harel, A. F. Fidler, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 16444 (2010).
[CrossRef] [PubMed]

Q. Rev. Biophys. (1)

R. J. Cogdell, A. Gall, and J. Kohler, Q. Rev. Biophys. 39, 227 (2006).
[CrossRef] [PubMed]

Science (2)

M. Maroncelli, J. Macinnis, and G. R. Fleming, Science 243, 1674 (1989).
[CrossRef] [PubMed]

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Other (1)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Linear absorption spectrum (blue) of LH2 complex from Rh. sphaeroides is shown with a spectrum of the continuum excitation pulse (red). Each band in the spectrum corresponds to one of two concentric rings consisting of BChl pigments sandwiched between protein subunits.

Fig. 2
Fig. 2

Schematic of the GRAPE apparatus. Four pulses are reflected off three mirrors and focused using a 250 mm cylindrical lens (not shown) onto a 200 μm thick sample cell. The spatially encoded 2D photon echo pulse sequence is shown in the upper right. The tilt of the wavefronts of each pulse defines the temporal gradient along the beam waist.

Fig. 3
Fig. 3

Rephasing 2D electronic spectra of LH2 recorded at T = 100 fs and T = 800 fs in one laser shot. Absolute value spectra are shown. With spectrally resolved pump-probe measurements (not recorded here), the absorptive and dispersive portion of the response could be separated. The coherence axis is recorded in the rotating frame.

Metrics