Abstract

A very compact and innovative pulse shaper is proposed and demonstrated. The standard architecture for pulse shaping that is composed of diffraction gratings associated with an amplitude-phase spatial light modulator (SLM) is replaced by a single phase-only SLM. It acts as a pulse stretcher and as an amplitude and phase modulator at the same time. Preliminary experiments demonstrate the accurate control of amplitude and phase of shaped pulses.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. B. Colombeau, M. Vampouille, and C. Froehly, Opt. Commun. 19, 201 (1976).
    [CrossRef]
  3. P. Emplit, J. P. Hamaide, and F. Reynaud, Opt. Lett. 17, 1358 (1992).
    [CrossRef] [PubMed]
  4. D. E. Leaird and A. M. Weiner, Opt. Lett. 24, 853 (1999).
    [CrossRef]
  5. A. Vega, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 1554 (2010).
    [CrossRef] [PubMed]
  6. G. Minguez-Vega, J. D. McKinney, and A. M. Weiner, Opt. Express 13, 8056 (2005).
    [CrossRef] [PubMed]
  7. G. Minguez-Vega, O. Mendoza-Yero, J. Lancis, R. Gisbert, and P. Andres, Opt. Express 16, 16993 (2008).
    [CrossRef] [PubMed]
  8. G. Mínguez-Vega, V. R. Supradeepa, O. Mendoza-Yero, and A. M. Weiner, Opt. Lett. 35, 2406 (2010).
    [CrossRef] [PubMed]
  9. D. E. Leaird and A. M. Weiner, Opt. Lett. 25, 850 (2000).
    [CrossRef]
  10. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, Opt. Lett. 30, 323 (2005).
    [CrossRef] [PubMed]
  11. E. Frumker and Y. Silberberg, J. Opt. Soc. Am. B 24, 2940 (2007).
    [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  13. D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
    [CrossRef]
  14. E. Frumker and Y. Silberberg, Opt. Lett. 32, 1384 (2007).
    [CrossRef] [PubMed]

2010 (2)

2008 (1)

2007 (2)

2005 (2)

2001 (1)

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

2000 (2)

1999 (1)

1992 (1)

1976 (1)

B. Colombeau, M. Vampouille, and C. Froehly, Opt. Commun. 19, 201 (1976).
[CrossRef]

Andres, P.

Colombeau, B.

B. Colombeau, M. Vampouille, and C. Froehly, Opt. Commun. 19, 201 (1976).
[CrossRef]

Emplit, P.

Feurer, T.

Froehly, C.

B. Colombeau, M. Vampouille, and C. Froehly, Opt. Commun. 19, 201 (1976).
[CrossRef]

Frumker, E.

Gisbert, R.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Hamaide, J. P.

Hornung, T.

Lancis, J.

Leaird, D. E.

McKinney, J. D.

Mendoza-Yero, O.

Minguez-Vega, G.

Mínguez-Vega, G.

Nelson, K. A.

Reynaud, F.

Silberberg, Y.

Supradeepa, V. R.

Vampouille, M.

B. Colombeau, M. Vampouille, and C. Froehly, Opt. Commun. 19, 201 (1976).
[CrossRef]

Vaughan, J. C.

Vega, A.

Weiner, A. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conventional (a) and simplified (b) DST pulse shaper. The setup depicted in (a) is a combination of previously reported schemes [3, 4]. In both cases the diffraction grating is preferentially in Littrow configuration.

Fig. 2
Fig. 2

Phase distribution Φ ( x ) introduced along the x axis by the phase-only LC-SLM, which mimics an inhomogeneous blazed phase grating. The grating groove density p is constant.

Fig. 3
Fig. 3

Cross-correlation signals measured at the output of the DST shaper in case of amplitude modulation. (a) Doublet with maximal time separation. The time window of the shaper amounted to 1.6 ps . (b) Double pulse with different amplitude. (c) Double pulse with different durations. (d) Sequence of five equidistant pulses: in red solid curve, measured cross-correlation; in black solid curve, calculated cross-correlation from Eq. (3); the RMS difference between measured and calculated curves is 2.6%.

Fig. 4
Fig. 4

Phase modulation. A double pulse sequence was synthesized with two different phase relationships: 0 and π. As a consequence, the two related spectra are shifted by half a fringe.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r ( x , y ) = rect ( x p ) exp [ j ( 2 π α ( x ) x p + φ ( x ) ) ] * n δ ( x np ) ,
m ( x ) = sinc [ 1 α ( x ) ] exp [ j φ ( x ) ] .
E out ( t ) = E in ( t ) * [ m ( t / γ ) A ( t / γ ) ] .

Metrics