Abstract

We propose and experimentally demonstrate a time-domain bit-by-bit code-shifting scheme that can rapidly program ultralong, code-length variable optical code by using only a dispersive element and a high-speed phase modulator for improving information security. The proposed scheme operates in the bit overlap regime and could eliminate the vulnerability of extracting the code by analyzing the fine structure of the time-domain spectral phase encoded signal. It is also intrinsically immune to eavesdropping via conventional power detection and differential-phase-shift-keying (DPSK) demodulation attacks. With this scheme, 10Gbits/s of return-to-zero-DPSK data secured by bit-by-bit code shifting using up to 1024 chip optical code patterns have been transmitted over 49km error free. The proposed scheme exhibits the potential for high-data-rate secure optical communication and to realize even one time pad.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, Proc. SPIE 7632, 76321M (2009).
    [CrossRef]
  2. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
    [CrossRef] [PubMed]
  3. J. M. Castro, I. B. Djordjevic, and D. F. Geraghty, J. Lightwave Technol. 24, 1875 (2006).
    [CrossRef]
  4. Y. Du, F. Xue, S. J. B. Yoo, and Z. Ding, J. Lightwave Technol. 25, 2799 (2007).
    [CrossRef]
  5. T. H. Shake, J. Lightwave Technol. 23, 655 (2005).
    [CrossRef]
  6. Z. Jiang, D. E. Leaird, and A. M. Weiner, J. Lightwave Technol. 24, 4228 (2006).
    [CrossRef]
  7. Z. Si, F. Yin, M. Xin, H. Chen, M. Chen, and S. Xie, Opt. Lett. 35, 229 (2010).
    [CrossRef] [PubMed]
  8. T. Kodama, N. Nakagawa, N. Kataoka, N. Wada, G. Cincotti, X. Wang, T. Miyazaki, and K. Kitayama, J. Lightwave Technol. 28, 181 (2010).
    [CrossRef]
  9. X. Wang and N. Wada, Opt. Express 15, 7319 (2007).
    [CrossRef] [PubMed]
  10. X. Wang, Z. Gao, X. H. Wang, N. Kataoka, and N. Wada, Opt. Express 19, 3503 (2011).
    [CrossRef] [PubMed]

2011

2010

2009

P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, Proc. SPIE 7632, 76321M (2009).
[CrossRef]

2007

2006

2005

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

T. H. Shake, J. Lightwave Technol. 23, 655 (2005).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Castro, J. M.

Chen, H.

Chen, M.

Cincotti, G.

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Deng, Y.

P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, Proc. SPIE 7632, 76321M (2009).
[CrossRef]

Ding, Z.

Djordjevic, I. B.

Du, Y.

Fisher, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Fok, M. P.

P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, Proc. SPIE 7632, 76321M (2009).
[CrossRef]

Gao, Z.

Garcia-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Geraghty, D. F.

Jiang, Z.

Kataoka, N.

Kitayama, K.

Kodama, T.

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Leaird, D. E.

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Miyazaki, T.

Nakagawa, N.

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Prucnal, P. R.

P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, Proc. SPIE 7632, 76321M (2009).
[CrossRef]

Shake, T. H.

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Si, Z.

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fisher, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
[CrossRef] [PubMed]

Wada, N.

Wang, X.

Wang, X. H.

Wang, Z.

P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, Proc. SPIE 7632, 76321M (2009).
[CrossRef]

Weiner, A. M.

Xie, S.

Xin, M.

Xue, F.

Yin, F.

Yoo, S. J. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of the proposed bit-by-bit code-shifting scheme. (a) Original DPSK data, (b) bit-by-bit code-shifting after pulse stretching, and (c) correctly decoded signal and eavesdropper-intercepted signal without correct OC.

Fig. 2
Fig. 2

Experimental setup of the proposed time-domain bit-by-bit code-shifting scheme.

Fig. 3
Fig. 3

(a) Spectrum and (b) waveform of the stretched pulse after the dispersive SMF; (c) and (d) are the spectra of the correct and incorrect decoded signals, respectively.

Fig. 4
Fig. 4

Waveforms of the decoded signals (a) with proper dispersion and OC, (b) without proper dispersion, and (c) without proper OC. (d)–(f) are the corresponding eye diagrams after the DPSK demodulator for (a)–(c).

Fig. 5
Fig. 5

Peak intensity of the decoded pulse versus timing error for different kinds of OC.

Fig. 6
Fig. 6

BER curves of the secure DPSK data with various OCs.

Metrics