Abstract

Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Cole, E. Barouch, E. W. Conrad, and M. Yeung, Proc. IEEE 89, 1194 (2001).
    [CrossRef]
  2. A. R. Neureuther, Microelectron. Eng. 17, 377 (1992).
    [CrossRef]
  3. J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, Opt. Lett. 29, 2267 (2004).
    [CrossRef] [PubMed]
  4. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  5. M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University Press, 1999).
  6. J. Tervo, T. Setälä, and A. T. Friberg, J. Opt. Soc. Am. A 21, 2205 (2004).
    [CrossRef]
  7. I. R. Capoglu, “Techniques for handling multilayered media in the FDTD method,” Ph.D. thesis (Georgia Institute of Technology, 2007).
  8. P. Török, P. R. T. Munro, and E. E. Kriezis, Opt. Express 16, 507 (2008).
    [CrossRef] [PubMed]
  9. Y. Liu, X. Li, Y. L. Kim, and V. Backman, Opt. Lett. 30, 2445 (2005).
    [CrossRef] [PubMed]
  10. Because of the finite illumination NA, the bottom interface is far out of focus. The reflection from that interface is spread over a large area, with much reduced intensity at the top interface. We therefore neglect the presence of the bottom interface and assume a two-layered geometry.

2008

2005

2004

2001

D. C. Cole, E. Barouch, E. W. Conrad, and M. Yeung, Proc. IEEE 89, 1194 (2001).
[CrossRef]

1992

A. R. Neureuther, Microelectron. Eng. 17, 377 (1992).
[CrossRef]

Backman, V.

Barouch, E.

D. C. Cole, E. Barouch, E. W. Conrad, and M. Yeung, Proc. IEEE 89, 1194 (2001).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University Press, 1999).

Capoglu, I. R.

I. R. Capoglu, “Techniques for handling multilayered media in the FDTD method,” Ph.D. thesis (Georgia Institute of Technology, 2007).

Cole, D. C.

D. C. Cole, E. Barouch, E. W. Conrad, and M. Yeung, Proc. IEEE 89, 1194 (2001).
[CrossRef]

Conrad, E. W.

D. C. Cole, E. Barouch, E. W. Conrad, and M. Yeung, Proc. IEEE 89, 1194 (2001).
[CrossRef]

DiMarzio, C. A.

Dunn, A. K.

Friberg, A. T.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Hollmann, J. L.

Kim, Y. L.

Kriezis, E. E.

Li, X.

Liu, Y.

Munro, P. R. T.

Neureuther, A. R.

A. R. Neureuther, Microelectron. Eng. 17, 377 (1992).
[CrossRef]

Setälä, T.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tervo, J.

Török, P.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University Press, 1999).

Yeung, M.

D. C. Cole, E. Barouch, E. W. Conrad, and M. Yeung, Proc. IEEE 89, 1194 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Microelectron. Eng.

A. R. Neureuther, Microelectron. Eng. 17, 377 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

D. C. Cole, E. Barouch, E. W. Conrad, and M. Yeung, Proc. IEEE 89, 1194 (2001).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University Press, 1999).

Because of the finite illumination NA, the bottom interface is far out of focus. The reflection from that interface is spread over a large area, with much reduced intensity at the top interface. We therefore neglect the presence of the bottom interface and assume a two-layered geometry.

I. R. Capoglu, “Techniques for handling multilayered media in the FDTD method,” Ph.D. thesis (Georgia Institute of Technology, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Four subcomponents of an optical imaging system. (a) Illumination and scattering, (b) collection and refocusing.

Fig. 2
Fig. 2

Equally spaced arrangement of 88 plane waves for Kohler illumination with NA ill = 0.6 . Two orthogonal polarizations ( + ) and ( × ) are shown for each direction of incidence.

Fig. 3
Fig. 3

Comparison of experimental results with FDTD calculations. (a)  2.1 μm bead, (b)  4.3 μm bead.

Fig. 4
Fig. 4

Effect of the glass half-space below the bead on the reflectance spectrum at the center pixel.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E img ( x , y ) = i k 2 π Ω img A ( s x , s y ) exp ( i k ( s x x + s y y ) ) d Ω ,

Metrics