Abstract

We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse- electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hassani, A. Dupuis, and M. Skorobogatiy, J. Opt. Soc. Am. B 25, 1771 (2008).
    [CrossRef]
  2. B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, Opt. Express 18, 19353 (2010).
    [CrossRef] [PubMed]
  3. H. Kurt and D. S. Citrin, Appl. Phys. Lett. 87, 241119(2005).
    [CrossRef]
  4. A. Bingham and D. Grischkowsky, Opt. Lett. 33, 348 (2008).
    [CrossRef] [PubMed]
  5. C. M. Yee and M. S. Sherwin, Appl. Phys. Lett. 94, 154104 (2009).
    [CrossRef]
  6. M. Nagel and H. Kurz, Int. J. Infrared Millim. Waves 27, 517 (2006).
    [CrossRef]
  7. M. Gerhard, C. Imhof, and R. Zengerle, J. Appl. Phys. 108, 026102 (2010).
    [CrossRef]
  8. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
    [CrossRef]
  9. C. Debus and P. H. Bolivar, Appl. Phys. Lett. 91, 184102 (2007).
    [CrossRef]
  10. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, Opt. Express 16, 1786 (2008).
    [CrossRef] [PubMed]
  11. S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
    [CrossRef]
  12. M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
    [CrossRef]
  13. A. Bingham and D. Grischkowsky, Appl. Phys. Lett. 90, 091105 (2007).
    [CrossRef]
  14. S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
    [CrossRef]
  15. R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
    [CrossRef]
  16. R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
    [CrossRef]
  17. R. Mendis and D. M. Mittleman, Opt. Express 17, 14839 (2009).
    [CrossRef] [PubMed]
  18. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
    [CrossRef]
  19. D.M.Mittleman, ed., Sensing with Terahertz Radiation(Springer, 2002).
  20. T.E.Itoh, ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (Wiley, 1989).
  21. F. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134 (1995).
    [CrossRef]
  22. T. Thumvongskul and T. Shiozawa, Microw. Opt. Technol. Lett. 32, 414 (2002).
    [CrossRef]
  23. A. Bingham, “Propagation through THz waveguides with photonic crystal boundaries,” Ph.D. dissertation (Oklahoma State University, 2007).
  24. Y.-H. Liu and H.-F. Li, Nucl. Instrum. Methods 598, 605 (2009).
    [CrossRef]
  25. J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, Proc. IEEE 95, 1624 (2007).
    [CrossRef]

2010 (2)

2009 (8)

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

C. M. Yee and M. S. Sherwin, Appl. Phys. Lett. 94, 154104 (2009).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Y.-H. Liu and H.-F. Li, Nucl. Instrum. Methods 598, 605 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, Opt. Express 17, 14839 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (3)

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, Proc. IEEE 95, 1624 (2007).
[CrossRef]

A. Bingham and D. Grischkowsky, Appl. Phys. Lett. 90, 091105 (2007).
[CrossRef]

C. Debus and P. H. Bolivar, Appl. Phys. Lett. 91, 184102 (2007).
[CrossRef]

2006 (1)

M. Nagel and H. Kurz, Int. J. Infrared Millim. Waves 27, 517 (2006).
[CrossRef]

2005 (2)

H. Kurt and D. S. Citrin, Appl. Phys. Lett. 87, 241119(2005).
[CrossRef]

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

2002 (1)

T. Thumvongskul and T. Shiozawa, Microw. Opt. Technol. Lett. 32, 414 (2002).
[CrossRef]

2001 (1)

1995 (1)

Astley, V.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Berndsen, N.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, Proc. IEEE 95, 1624 (2007).
[CrossRef]

Bettiol, A. A.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

Bingham, A.

A. Bingham and D. Grischkowsky, Opt. Lett. 33, 348 (2008).
[CrossRef] [PubMed]

A. Bingham and D. Grischkowsky, Appl. Phys. Lett. 90, 091105 (2007).
[CrossRef]

A. Bingham, “Propagation through THz waveguides with photonic crystal boundaries,” Ph.D. dissertation (Oklahoma State University, 2007).

Bolivar, P. H.

C. Debus and P. H. Bolivar, Appl. Phys. Lett. 91, 184102 (2007).
[CrossRef]

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Borsboom, F.

Brener, I.

Chen, H.-Z.

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, Appl. Phys. Lett. 87, 241119(2005).
[CrossRef]

Debus, C.

C. Debus and P. H. Bolivar, Appl. Phys. Lett. 91, 184102 (2007).
[CrossRef]

Deibel, J.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, Proc. IEEE 95, 1624 (2007).
[CrossRef]

Dupuis, A.

Escarra, M.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, Proc. IEEE 95, 1624 (2007).
[CrossRef]

Frankena, H. J.

Gerhard, M.

M. Gerhard, C. Imhof, and R. Zengerle, J. Appl. Phys. 108, 026102 (2010).
[CrossRef]

Grischkowsky, D.

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

A. Bingham and D. Grischkowsky, Opt. Lett. 33, 348 (2008).
[CrossRef] [PubMed]

A. Bingham and D. Grischkowsky, Appl. Phys. Lett. 90, 091105 (2007).
[CrossRef]

R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
[CrossRef]

Gu, J.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

Han, J.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, Opt. Express 16, 1786 (2008).
[CrossRef] [PubMed]

Harsha, S. S.

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

Hassani, A.

Imhof, C.

M. Gerhard, C. Imhof, and R. Zengerle, J. Appl. Phys. 108, 026102 (2010).
[CrossRef]

Kato, E.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

Kawase, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

Kurt, H.

H. Kurt and D. S. Citrin, Appl. Phys. Lett. 87, 241119(2005).
[CrossRef]

Kurz, H.

M. Nagel and H. Kurz, Int. J. Infrared Millim. Waves 27, 517 (2006).
[CrossRef]

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Laman, N.

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

Li, H.-F.

Y.-H. Liu and H.-F. Li, Nucl. Instrum. Methods 598, 605 (2009).
[CrossRef]

Liou, J.-H.

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Liu, T.-A.

Liu, Y.-H.

Y.-H. Liu and H.-F. Li, Nucl. Instrum. Methods 598, 605 (2009).
[CrossRef]

Lu, J.-Y.

Mendis, R.

Mittleman, D. M.

R. Mendis and D. M. Mittleman, Opt. Express 17, 14839 (2009).
[CrossRef] [PubMed]

R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, Proc. IEEE 95, 1624 (2007).
[CrossRef]

Nagel, M.

M. Nagel and H. Kurz, Int. J. Infrared Millim. Waves 27, 517 (2006).
[CrossRef]

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Nakagomi, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

O’Hara, J. F.

Ogawa, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

Peng, J.-L.

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, Appl. Phys. Lett. 94, 154104 (2009).
[CrossRef]

Shiozawa, T.

T. Thumvongskul and T. Shiozawa, Microw. Opt. Technol. Lett. 32, 414 (2002).
[CrossRef]

Singh, R.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, Opt. Express 16, 1786 (2008).
[CrossRef] [PubMed]

Skorobogatiy, M.

Smirnova, E.

Suizu, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

Taylor, A. J.

Thumvongskul, T.

T. Thumvongskul and T. Shiozawa, Microw. Opt. Technol. Lett. 32, 414 (2002).
[CrossRef]

Wang, K.

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, Proc. IEEE 95, 1624 (2007).
[CrossRef]

Yee, C. M.

C. M. Yee and M. S. Sherwin, Appl. Phys. Lett. 94, 154104 (2009).
[CrossRef]

Yoshida, S.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

You, B.

Yu, C.-P.

Zengerle, R.

M. Gerhard, C. Imhof, and R. Zengerle, J. Appl. Phys. 108, 026102 (2010).
[CrossRef]

Zhang, W.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, Opt. Express 16, 1786 (2008).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

Appl. Phys. Lett. (7)

C. Debus and P. H. Bolivar, Appl. Phys. Lett. 91, 184102 (2007).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

H. Kurt and D. S. Citrin, Appl. Phys. Lett. 87, 241119(2005).
[CrossRef]

C. M. Yee and M. S. Sherwin, Appl. Phys. Lett. 94, 154104 (2009).
[CrossRef]

A. Bingham and D. Grischkowsky, Appl. Phys. Lett. 90, 091105 (2007).
[CrossRef]

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

M. Nagel and H. Kurz, Int. J. Infrared Millim. Waves 27, 517 (2006).
[CrossRef]

J. Appl. Phys. (1)

M. Gerhard, C. Imhof, and R. Zengerle, J. Appl. Phys. 108, 026102 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Microw. Opt. Technol. Lett. (1)

T. Thumvongskul and T. Shiozawa, Microw. Opt. Technol. Lett. 32, 414 (2002).
[CrossRef]

Nucl. Instrum. Methods (1)

Y.-H. Liu and H.-F. Li, Nucl. Instrum. Methods 598, 605 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. IEEE (1)

J. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, Proc. IEEE 95, 1624 (2007).
[CrossRef]

Semicond. Sci. Technol. (1)

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Other (3)

A. Bingham, “Propagation through THz waveguides with photonic crystal boundaries,” Ph.D. dissertation (Oklahoma State University, 2007).

D.M.Mittleman, ed., Sensing with Terahertz Radiation(Springer, 2002).

T.E.Itoh, ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (Wiley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Longitudinal cross section (top) and input face view (bottom) of the assembled PPWG (not to scale). (b) A typical power transmission spectrum for a PPWG with a 400 μm wide by 406 μm deep groove, showing the dominant resonant feature characteristic of this cavity geometry.

Fig. 2
Fig. 2

Q factor and resonant frequency (inset) produced by rectangular grooves of 460 μm width and varying depth. Experimental data (squares) are compared to the results of mode-matching analysis (gray curves).

Fig. 3
Fig. 3

Power transmission spectra from PPWGs with rectangular grooves of 406 μm depth and varying width. The width of each groove and a sketch of the waveguide geometry are given to the right of each spectrum. The black dotted line marks the TE 3 cutoff frequency.

Fig. 4
Fig. 4

Resonant frequency versus PPWG plate separation. As the spacing between waveguide plates decreases, the dominant resonant feature shifts to higher frequencies. Comparison of experimental results (black squares) to results from FEM simulation (solid gray curve) and mode-matching analysis (dotted gray curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f R = c 2 ( 1 w ) 2 + ( 1 h ) 2 = 359 GHz ,

Metrics