Abstract

Depth resolution is limited by the photoelectron shot noise in conventional gain-modulated active three- dimensional (3D) imaging methods. A proposed method, which is based on photon intensity correlation, is presented to overcome the depth resolution limitation. The signal photons are amplified by an imaging intensifier, and are then divided into two beams by a beam splitter. The theory shows that the shot-noise limitation is broken using the strong intensity coherence between the two beams. The experiment results show that the depth resolution of the correlated active 3D imaging method is three times better than that of the shot-noise limitation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Busck and H. Heiselberg, Appl. Opt. 43, 4705 (2004).
    [CrossRef] [PubMed]
  2. M. Kavakita, K. Iizuka, R. Iwama, K. Takizawa, H. Kikuchi, and F. Sato, Opt. Express 12, 5336 (2004).
    [CrossRef]
  3. P. Andersson, Opt. Eng. 45, 034301 (2006).
    [CrossRef]
  4. M. Laurenzis, F. Christnacher, and D. Monnin, Opt. Lett. 32, 3146 (2007).
    [CrossRef] [PubMed]
  5. Z. Xiuda, Y. Huimin, and J. Yanbing, Opt. Lett. 33, 1219 (2008).
    [CrossRef] [PubMed]
  6. I. C. Jin, X. Sun, Y. Zhao, Y. Zhang, and L. Liu, Opt. Lett. 34, 3550 (2009).
    [CrossRef] [PubMed]
  7. M. Laurenzis, Appl. Opt. 49, 2271 (2010).
    [CrossRef] [PubMed]
  8. J. Steven and C. Stephen, Appl. Opt. 47, 5147 (2008).
    [CrossRef]
  9. Y. Li, D. Guzun, and M. Xiao, Phys. Rev. Lett. 82, 5225(1999).
    [CrossRef]
  10. R. Mark and K. Sumanth, Appl. Opt. 48, 4597 (2009).
    [CrossRef]
  11. M. C. Teich, Appl. Opt. 20, 2457 (1981).
    [CrossRef] [PubMed]
  12. G. Brida, M. Genovese, and I. R. Berchera, Nat. Photon. 4, 227 (2010).
    [CrossRef]
  13. I. P. Csorba, Appl. Opt. 19, 3863 (1980).
    [CrossRef] [PubMed]
  14. R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, Proc. SPIE 5076, 101 (2003).
    [CrossRef]
  15. E. Golbraikh and N. S. Kopeika, Appl. Opt. 43, 6151 (2004).
    [CrossRef] [PubMed]

2010 (2)

G. Brida, M. Genovese, and I. R. Berchera, Nat. Photon. 4, 227 (2010).
[CrossRef]

M. Laurenzis, Appl. Opt. 49, 2271 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

2007 (1)

2006 (1)

P. Andersson, Opt. Eng. 45, 034301 (2006).
[CrossRef]

2004 (3)

2003 (1)

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, Proc. SPIE 5076, 101 (2003).
[CrossRef]

1999 (1)

Y. Li, D. Guzun, and M. Xiao, Phys. Rev. Lett. 82, 5225(1999).
[CrossRef]

1981 (1)

1980 (1)

Andersson, P.

P. Andersson, Opt. Eng. 45, 034301 (2006).
[CrossRef]

Berchera, I. R.

G. Brida, M. Genovese, and I. R. Berchera, Nat. Photon. 4, 227 (2010).
[CrossRef]

Brida, G.

G. Brida, M. Genovese, and I. R. Berchera, Nat. Photon. 4, 227 (2010).
[CrossRef]

Busck, J.

Christnacher, F.

Csorba, I. P.

Devitt, N.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, Proc. SPIE 5076, 101 (2003).
[CrossRef]

Genovese, M.

G. Brida, M. Genovese, and I. R. Berchera, Nat. Photon. 4, 227 (2010).
[CrossRef]

Golbraikh, E.

Guzun, D.

Y. Li, D. Guzun, and M. Xiao, Phys. Rev. Lett. 82, 5225(1999).
[CrossRef]

Halford, C.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, Proc. SPIE 5076, 101 (2003).
[CrossRef]

Heiselberg, H.

Huimin, Y.

Iizuka, K.

Iwama, R.

Jacobs, E.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, Proc. SPIE 5076, 101 (2003).
[CrossRef]

Jin, I. C.

Kavakita, M.

Kikuchi, H.

Kopeika, N. S.

Laurenzis, M.

Li, Y.

Y. Li, D. Guzun, and M. Xiao, Phys. Rev. Lett. 82, 5225(1999).
[CrossRef]

Liu, L.

Mark, R.

Maurer, T.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, Proc. SPIE 5076, 101 (2003).
[CrossRef]

Monnin, D.

Sato, F.

Stephen, C.

Steven, J.

Sumanth, K.

Sun, X.

Takizawa, K.

Teich, M. C.

Vollmerhausen, R.

R. Vollmerhausen, E. Jacobs, N. Devitt, T. Maurer, and C. Halford, Proc. SPIE 5076, 101 (2003).
[CrossRef]

Xiao, M.

Y. Li, D. Guzun, and M. Xiao, Phys. Rev. Lett. 82, 5225(1999).
[CrossRef]

Xiuda, Z.

Yanbing, J.

Zhang, Y.

Zhao, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Traditional gain-modulated active 3D imaging and time sequence of emitted light pulse and intensified camera gains.

Fig. 2
Fig. 2

Correlation between active 3D imaging, time sequence of emitted light pulse, and the intensified camera gains.

Fig. 3
Fig. 3

Real distance errors of the traditional gain-modulated method and correlated method, as well as the shot-noise limitation distance error.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( z ) = r z 2 e 2 τ z η G 1 ( t + 2 z / c ) L ( t ) d t
I 2 ( z ) = r z 2 e 2 τ z η G 2 ( t + 2 z / c ) L ( t ) d t ,
I 1 I 2 = G 1 ( t + 2 z / c ) L ( t ) d t G 2 ( t + 2 z / c ) L ( t ) d t = u ( z ) .
z = u 1 ( I 1 / I 2 ) = f ( I 1 / I 2 ) = f ( u ) ,
δ z = | u f ( u ) | [ ( δ I 1 I 1 ) 2 + ( δ I 2 I 2 ) 2 2 δ ( I 1 I 2 ) I 1 I 2 ] 1 / 2 ,
δ ( I 1 I 2 ) = ( I 1 I 1 ) ( I 2 I 2 ) .
I 1 = g 1 n 1
I 2 = g 2 n 2 ,
N = n 1 = n 2 [ r z 2 e 2 τ z η L ( t ) d t ] / ( h γ ) ,
δ n 1 = δ n 2 = N 1 / 2 .
δ ( n 1 n 2 ) = 0 .
δ z O = | u f ( u ) | ( 2 / N ) 1 / 2 .
I C 1 = g 1 m 1
I C 2 = g 2 m 2 ,
m 1 = m 2 = M n / 2 = M N / 2 .
δ m 1 = δ m 2 = ( M N / 2 + M 2 N / 4 ) 1 / 2
δ ( m 1 m 2 ) = M 2 N / 4 .
δ z C = 2 | u f ( u ) | / ( M N ) 1 / 2 .

Metrics