Abstract

We demonstrate in an optical fiber that third-order dispersion yields an unexpected symmetry-breaking dynamics of the modulational instability spectrum. It is found in particular that this spectral asymmetry does not smoothly and monotonically increase when approaching the zero-dispersion wavelength. Instead, it exhibits several local extrema and it can even be reversed at a particular dispersion value. We interpret this behavior as resulting from interactions between dispersive waves and solitons generated from modulation instability.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, Opt. Lett. 9, 288 (1984).
    [CrossRef] [PubMed]
  2. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  3. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  4. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, Opt. Express 12, 2838 (2004).
    [CrossRef] [PubMed]
  5. A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
    [CrossRef] [PubMed]
  6. C. Michel, P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, Opt. Lett. 35, 2367 (2010).
    [CrossRef] [PubMed]
  7. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986).
    [CrossRef] [PubMed]
  8. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602(1995).
    [CrossRef] [PubMed]
  9. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
    [CrossRef]
  10. O. V. Sinkin, R. Holzlhner, J. Zweck, and C. R. Menyuk, J. Lightwave Technol. 21, 61 (2003).
    [CrossRef]
  11. A. Mussot, M. L. Parquier, and P. Szriftgiser, Opt. Comm. 283, 2607 (2010).
    [CrossRef]

2010 (2)

2008 (1)

A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

1995 (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602(1995).
[CrossRef] [PubMed]

1986 (1)

1984 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Akhmediev, N.

A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
[CrossRef] [PubMed]

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602(1995).
[CrossRef] [PubMed]

Chen, H. H.

Delage, L.

A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
[CrossRef]

Finot, C.

Hasegawa, A.

Holzlhner, R.

Jauslin, H. R.

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602(1995).
[CrossRef] [PubMed]

Lantz, E.

Lee, Y. C.

Louvergneaux, E.

A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
[CrossRef] [PubMed]

Maillotte, H.

Marhic, M. E.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

Menyuk, C. R.

Michel, C.

Mussot, A.

A. Mussot, M. L. Parquier, and P. Szriftgiser, Opt. Comm. 283, 2607 (2010).
[CrossRef]

A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
[CrossRef] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, Opt. Express 12, 2838 (2004).
[CrossRef] [PubMed]

Parquier, M. L.

A. Mussot, M. L. Parquier, and P. Szriftgiser, Opt. Comm. 283, 2607 (2010).
[CrossRef]

Picozzi, A.

Pitois, S.

Randoux, S.

Reynaud, F.

A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
[CrossRef] [PubMed]

Sinkin, O. V.

Suret, P.

Sylvestre, T.

Szriftgiser, P.

A. Mussot, M. L. Parquier, and P. Szriftgiser, Opt. Comm. 283, 2607 (2010).
[CrossRef]

Taki, M.

A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
[CrossRef] [PubMed]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
[CrossRef]

Wai, P. K. A.

Zweck, J.

J. Lightwave Technol. (1)

Opt. Comm. (1)

A. Mussot, M. L. Parquier, and P. Szriftgiser, Opt. Comm. 283, 2607 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602(1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, L. Delage, and M. Taki, Phys. Rev. Lett. 101, 113904 (2008).
[CrossRef] [PubMed]

Other (3)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
[CrossRef]

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Supplementary Material (1)

» Media 1: AVI (3711 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Numerical simulations. (a) Top view of MI spectrum evolution versus second-order dispersion, β 2 , in logarithmic scale. Dashed black line, ZDW position; dashed pink curve, DW position; dashed green curves, MI sidebands calculated from standard theory [3]. (b) to (g) Spectra corresponding to β 2 values pointed out by arrows along right side of (a), in linear scale. Simulations parameters are L = 6000 m , γ = 2.4 W 1 . km 1 , β 3 = 1.2 × 10 40 s 3 / m , α = 0.2 dB / km , and P P = 790 mW . A movie (Media 1) representing the spectrum evolution with β 3 = 0 (red line) and β 3 = 1.2 × 10 40 s 3 / m (blue curves) in logarithmic scale can be seen online.

Fig. 2
Fig. 2

Experimental results. Same representation as in Fig. 1, and same parameters except pump power ( 630 mW compared to 790 mW in simulations).

Fig. 3
Fig. 3

Evolution of the R P ratio between the Stokes and anti-Stokes MI side lobes power as a function of β 2 . Solid curve, experimental results for a pump power of 630 mW ; dashed and/or dotted curves, numerical simulations for different pump powers. Top rectangles, corresponding ratio between DWs ( Δ f DW ) and solitons ( Δ f MI ) spectral detuning from pump.

Metrics