Abstract

We propose and demonstrate an electro-optic (EO) multiplication of a frequency shift using 10GHz order electrical signal. The principle is based on a successive Bragg diffraction from cascaded EO traveling phase gratings in a traveling wave EO phase modulator. We fabricate a shift frequency doubler using simple domain engineering processes in a LiTaO3 crystal. Frequency shifting of ±32.5GHz with an efficiency of 60% is demonstrated using a 16.25GHz modulation signal.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Li and J. Yao, Opt. Express 17, 23712 (2009).
    [CrossRef]
  2. T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEICE Electron. Express 1, 217 (2004).
    [CrossRef]
  3. C. Dorrer and I. Kang, Opt. Lett. 28, 477 (2003).
    [CrossRef] [PubMed]
  4. C. Ndiaye, T. Hara, and H. Ito, in Conference on Lasers and Electro-Optics/Pacific Rim (IEEE, 2007).
  5. R. Houtz, C. Chan, and H. Muller, Opt. Express 17, 19235 (2009).
    [CrossRef]
  6. D. M. S. Johnson, J. M. Hogan, S.-W. Chiow, and M. A. Kasevich, Opt. Lett. 35, 745 (2010).
    [CrossRef] [PubMed]
  7. M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
    [CrossRef]
  8. S. Hisatake and T. Kobayashi, Opt. Lett. 31, 498 (2006).
    [CrossRef] [PubMed]
  9. K. Shibuya, S. Hisatake, and T. Kobayash, IEEE Photon. Technol. Lett. 16, 1939 (2004).
    [CrossRef]
  10. K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
    [CrossRef]
  11. S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, Jpn. J. Appl. Phys. 42, 4334 (2003).
    [CrossRef]
  12. T. Nagatsuma, H. Ito, and T. Ishibashi, Laser Photon. Rev. 3, 123 (2009).
    [CrossRef]

2010 (1)

2009 (3)

2006 (1)

2004 (2)

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEICE Electron. Express 1, 217 (2004).
[CrossRef]

K. Shibuya, S. Hisatake, and T. Kobayash, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

2003 (2)

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, Jpn. J. Appl. Phys. 42, 4334 (2003).
[CrossRef]

C. Dorrer and I. Kang, Opt. Lett. 28, 477 (2003).
[CrossRef] [PubMed]

1996 (1)

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[CrossRef]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

Chan, C.

Chiow, S.-W.

Dorrer, C.

Fujimura, M.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[CrossRef]

Hara, T.

C. Ndiaye, T. Hara, and H. Ito, in Conference on Lasers and Electro-Optics/Pacific Rim (IEEE, 2007).

Hisatake, S.

S. Hisatake and T. Kobayashi, Opt. Lett. 31, 498 (2006).
[CrossRef] [PubMed]

K. Shibuya, S. Hisatake, and T. Kobayash, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

Hogan, J. M.

Houtz, R.

Ishibashi, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, Laser Photon. Rev. 3, 123 (2009).
[CrossRef]

Ito, H.

T. Nagatsuma, H. Ito, and T. Ishibashi, Laser Photon. Rev. 3, 123 (2009).
[CrossRef]

C. Ndiaye, T. Hara, and H. Ito, in Conference on Lasers and Electro-Optics/Pacific Rim (IEEE, 2007).

Izutsu, M.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEICE Electron. Express 1, 217 (2004).
[CrossRef]

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

Johnson, D. M. S.

Kang, I.

Kasevich, M. A.

Kawanishi, T.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEICE Electron. Express 1, 217 (2004).
[CrossRef]

Kintaka, K.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[CrossRef]

Kobayash, T.

K. Shibuya, S. Hisatake, and T. Kobayash, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

Kobayashi, T.

Konishi, M.

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, Jpn. J. Appl. Phys. 42, 4334 (2003).
[CrossRef]

Li, W.

Minakata, M.

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, Jpn. J. Appl. Phys. 42, 4334 (2003).
[CrossRef]

Muller, H.

Nagano, S.

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, Jpn. J. Appl. Phys. 42, 4334 (2003).
[CrossRef]

Nagatsuma, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, Laser Photon. Rev. 3, 123 (2009).
[CrossRef]

Ndiaye, C.

C. Ndiaye, T. Hara, and H. Ito, in Conference on Lasers and Electro-Optics/Pacific Rim (IEEE, 2007).

Nishihara, H.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEICE Electron. Express 1, 217 (2004).
[CrossRef]

Shibuya, K.

K. Shibuya, S. Hisatake, and T. Kobayash, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

Shinada, S.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEICE Electron. Express 1, 217 (2004).
[CrossRef]

Shiomi, T.

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, Jpn. J. Appl. Phys. 42, 4334 (2003).
[CrossRef]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

Suhara, T.

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[CrossRef]

Yao, J.

IEEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Shibuya, S. Hisatake, and T. Kobayash, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

IEICE Electron. Express (1)

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEICE Electron. Express 1, 217 (2004).
[CrossRef]

J. Lightwave Technol. (1)

K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, J. Lightwave Technol. 14, 462 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, Jpn. J. Appl. Phys. 42, 4334 (2003).
[CrossRef]

Laser Photon. Rev. (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, Laser Photon. Rev. 3, 123 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

C. Ndiaye, T. Hara, and H. Ito, in Conference on Lasers and Electro-Optics/Pacific Rim (IEEE, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of the proposed device. (a) Basic structure of the domain-inverted ferroelectric crystal. The width and the center position of the domain-inverted region is L and y 0 ( x ) , respectively. (b) Schematic of the multiplication operation of the frequency shift.

Fig. 2
Fig. 2

Schematic of the fabricated device. Two ETPGs are cascaded. The modulation signal is guided by the microstrip line.

Fig. 3
Fig. 3

Upshifted (dotted curve) and downshifted (solid curve) spectra.

Fig. 4
Fig. 4

Power ratio of the upshifted ( + 2 f m ) and carrier components to the total output power as a function of the square root of the modulation power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( x , t ) = Δ ϕ m sin ( 2 π f m t + π y 0 ( x ) L ) = Δ ϕ m sin ( 2 π f m t + β x ) ,
P 0 ( θ ) = 1 η ( θ ) 1 η ( θ ) + ( α η ( θ ) ) 2 ,
P 2 ( θ ) = ( α β η ( θ ) ) 2 1 η ( θ ) + ( α η ( θ ) ) 2 ,

Metrics