Abstract

We propose a simple and, to our knowledge, novel method for suppressing the bias drift of interferometric all-fiber optic gyroscopes (I-FOGs) and for self-calibrating the bias of I-FOGs to zero. Using a square wave to reverse the polarity of the sinusoidal voltage on a piezoelectric (PZT) modulator periodically, and calculating the output signal of a demodulator circuit in-phase with the square wave by a digital signal processor (DSP), we successfully reduce the bias drift of I-FOGs. Experimental results show that, at room temperature, the proposed method dramatically reduces the bias instability of an I-FOG from 0.201  deg/h to 0.102  deg/h. With this method, the I-FOGs no longer need zero calibration.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).
  2. H. J. Arditty and H. C. Lefèvre, Opt. Lett. 6, 401 (1981).
    [CrossRef] [PubMed]
  3. V. Vali and R. W. Shorthill, Appl. Opt. 15, 1099 (1976).
    [CrossRef] [PubMed]
  4. H. C. Lefèvre, Opt. Rev. 4, A20 (1997).
    [CrossRef]
  5. D. H. Kim and J. U. Kang, Opt. Express 12, 4490 (2004).
    [CrossRef] [PubMed]
  6. R. Ulrich, Opt. Lett. 5, 173 (1980).
    [CrossRef] [PubMed]
  7. H. Chung, L. Ojeda, and J. Borenstein, IEEE Trans. Robot. Autom. 17, 80 (2001).
    [CrossRef]
  8. X. Wang, C. Wu, and Z. Wang, Microw. Opt. Technol. Lett. 51, 1763 (2009).
    [CrossRef]
  9. X. Wang and Z. Wang, Opt. Express 18, 49 (2009).
    [CrossRef]
  10. D. W. Allan, Proc. IEEE 54, 221 (1966).
    [CrossRef]
  11. F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
    [CrossRef]

2009 (2)

X. Wang, C. Wu, and Z. Wang, Microw. Opt. Technol. Lett. 51, 1763 (2009).
[CrossRef]

X. Wang and Z. Wang, Opt. Express 18, 49 (2009).
[CrossRef]

2004 (1)

2001 (1)

H. Chung, L. Ojeda, and J. Borenstein, IEEE Trans. Robot. Autom. 17, 80 (2001).
[CrossRef]

1997 (1)

H. C. Lefèvre, Opt. Rev. 4, A20 (1997).
[CrossRef]

1986 (1)

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

1981 (1)

1980 (1)

1976 (1)

1966 (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Allan, D. W.

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Arditty, H. J.

Borenstein, J.

H. Chung, L. Ojeda, and J. Borenstein, IEEE Trans. Robot. Autom. 17, 80 (2001).
[CrossRef]

Chung, H.

H. Chung, L. Ojeda, and J. Borenstein, IEEE Trans. Robot. Autom. 17, 80 (2001).
[CrossRef]

Kang, J. U.

Kim, D. H.

Lefèvre, H. C.

H. C. Lefèvre, Opt. Rev. 4, A20 (1997).
[CrossRef]

H. J. Arditty and H. C. Lefèvre, Opt. Lett. 6, 401 (1981).
[CrossRef] [PubMed]

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).

Ojeda, L.

H. Chung, L. Ojeda, and J. Borenstein, IEEE Trans. Robot. Autom. 17, 80 (2001).
[CrossRef]

Shorthill, R. W.

Ulrich, R.

Vali, V.

Walls, F. L.

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

Wang, X.

X. Wang, C. Wu, and Z. Wang, Microw. Opt. Technol. Lett. 51, 1763 (2009).
[CrossRef]

X. Wang and Z. Wang, Opt. Express 18, 49 (2009).
[CrossRef]

Wang, Z.

X. Wang and Z. Wang, Opt. Express 18, 49 (2009).
[CrossRef]

X. Wang, C. Wu, and Z. Wang, Microw. Opt. Technol. Lett. 51, 1763 (2009).
[CrossRef]

Wu, C.

X. Wang, C. Wu, and Z. Wang, Microw. Opt. Technol. Lett. 51, 1763 (2009).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Robot. Autom. (1)

H. Chung, L. Ojeda, and J. Borenstein, IEEE Trans. Robot. Autom. 17, 80 (2001).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

X. Wang, C. Wu, and Z. Wang, Microw. Opt. Technol. Lett. 51, 1763 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Rev. (1)

H. C. Lefèvre, Opt. Rev. 4, A20 (1997).
[CrossRef]

Proc. IEEE (2)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

Other (1)

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of the conventional optical and electronic circuits of an I-FOG.

Fig. 2
Fig. 2

Schematic diagram of the output rotation rate, before and after switching the polarity of the sinusoidal voltage.

Fig. 3
Fig. 3

All-fiber I-FOG with the novel method for suppressing the bias drift.

Fig. 4
Fig. 4

Allan variance analysis of an all-fiber I-FOG with (solid curve) and without (dashed curve) the proposed method.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V ( t ) = V 0 { 1 + cos [ Δ ϕ R + ϕ b cos ( 2 π f m t ) ] } ,
V ( t ) = V 0 + V 0 cos ( Δ ϕ R ) [ J 0 ( ϕ b ) + 2 J 2 ( ϕ b ) cos ( 2 ω m t ) + ] + V 0 sin ( Δ ϕ R ) [ 2 J 1 ( ϕ b ) sin ( ω m t ) + 2 J 3 ( ϕ b ) sin ( 3 ω m t ) + ] ,
V 1 ( Δ ϕ R ) = 2 V 0 J 1 ( ϕ b ) sin ( Δ ϕ R ) .
R out P ( t ) = R ( t ) + B 0 ( t ) + Δ ( t ) + Δ ( t ) ,
R out N ( t + δ ) = R ( t + δ ) + B 0 ( t + δ ) + Δ ( t + δ ) Δ ( t + δ ) ,
R out p ( t ) R out N ( t + δ ) 2 [ R ( t ) + R ( t + δ ) ] / 2 + Δ ( t ) .

Metrics