Abstract

Guided mode resonance (GMR) filters are highly functional micro-optics capable of narrowband spectral filtering. GMR devices have previously been demonstrated on flat substrates using a wide range of materials and configurations. In this Letter, we apply a soft lithographic technique followed by the deposition of dielectric layers to generate GMR filters on a concave lens surface. Resonances of the resulting conformal GMR filters are experimentally measured and characterized, and the results are compared to the performance of similar GMR filters fabricated on flat surfaces.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Thurman and G. M. Morris, Appl. Opt. 42, 3225 (2003).
    [PubMed]
  2. D. W. Dobbs, I. Gershkovich, and B. T. Cunningham, Appl. Phys. Lett. 89, 123113 (2006).
  3. C. L. Hsu, Y. C. Liu, C. M. Wang, M. L. Wu, Y. L. Tsai, Y. H. Chou, C. C. Lee, and J. Y. Chang, J. Lightwave Technol. 24, 1922 (2006).
  4. R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).
  5. R. C. Rumpf and E. G. Johnson, Opt. Express 15, 3452(2007).
    [PubMed]
  6. W. M. Choi and O. O. Park, Nanotechnology 15, 1767(2004).
  7. Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
    [PubMed]
  8. H. Sung-Hoon, H. A. N. Kang-Soo, H. Kyeong-Jae Byeon, and C. Kyung-Woo, Jpn. J. Appl. Phys. 47, 3699 (2008).
  9. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
  10. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).
  11. A. T. Cannistra and T. J. Suleski, J. Micro/Nanolithogr. MEMS MOEMS 9, 013025 (2010).
  12. G. G. Denisov, S. V. Kuzikov, and M. E. Plotkin, J. Infrared Millimeter Waves 30, 349 (2009).
  13. R. R. Boye and R. K. Kostuk, Appl. Opt. 39, 3649 (2000).
  14. K. R. Hiremath, “Coupled mode theory based modeling and analysis of circular optical microresonators,” Ph.D. dissertation (University of Twente, 2005).

2010

A. T. Cannistra and T. J. Suleski, J. Micro/Nanolithogr. MEMS MOEMS 9, 013025 (2010).

2009

G. G. Denisov, S. V. Kuzikov, and M. E. Plotkin, J. Infrared Millimeter Waves 30, 349 (2009).

2008

H. Sung-Hoon, H. A. N. Kang-Soo, H. Kyeong-Jae Byeon, and C. Kyung-Woo, Jpn. J. Appl. Phys. 47, 3699 (2008).

2007

2006

2004

W. M. Choi and O. O. Park, Nanotechnology 15, 1767(2004).

2003

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

S. T. Thurman and G. M. Morris, Appl. Opt. 42, 3225 (2003).
[PubMed]

2002

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).

2000

1996

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
[PubMed]

1995

Boye, R. R.

Byeon, H. Kyeong-Jae

H. Sung-Hoon, H. A. N. Kang-Soo, H. Kyeong-Jae Byeon, and C. Kyung-Woo, Jpn. J. Appl. Phys. 47, 3699 (2008).

Cannistra, A. T.

A. T. Cannistra and T. J. Suleski, J. Micro/Nanolithogr. MEMS MOEMS 9, 013025 (2010).

Chang, J. Y.

Choi, W. M.

W. M. Choi and O. O. Park, Nanotechnology 15, 1767(2004).

Chou, Y. H.

Cunningham, B. T.

D. W. Dobbs, I. Gershkovich, and B. T. Cunningham, Appl. Phys. Lett. 89, 123113 (2006).

Denisov, G. G.

G. G. Denisov, S. V. Kuzikov, and M. E. Plotkin, J. Infrared Millimeter Waves 30, 349 (2009).

Ding, Y.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

Dobbs, D. W.

D. W. Dobbs, I. Gershkovich, and B. T. Cunningham, Appl. Phys. Lett. 89, 123113 (2006).

Gaylord, T. K.

Gershkovich, I.

D. W. Dobbs, I. Gershkovich, and B. T. Cunningham, Appl. Phys. Lett. 89, 123113 (2006).

Grann, E. B.

Hiremath, K. R.

K. R. Hiremath, “Coupled mode theory based modeling and analysis of circular optical microresonators,” Ph.D. dissertation (University of Twente, 2005).

Hsu, C. L.

Johnson, E. G.

Kang-Soo, H. A. N.

H. Sung-Hoon, H. A. N. Kang-Soo, H. Kyeong-Jae Byeon, and C. Kyung-Woo, Jpn. J. Appl. Phys. 47, 3699 (2008).

Kim, E.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
[PubMed]

Kostuk, R. K.

Kuzikov, S. V.

G. G. Denisov, S. V. Kuzikov, and M. E. Plotkin, J. Infrared Millimeter Waves 30, 349 (2009).

Kyung-Woo, C.

H. Sung-Hoon, H. A. N. Kang-Soo, H. Kyeong-Jae Byeon, and C. Kyung-Woo, Jpn. J. Appl. Phys. 47, 3699 (2008).

Lee, C. C.

Lee, K. J.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

Liu, Y. C.

Love, J. C.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).

Magnusson, R.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

Maldonado, T. A.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

Moharam, M. G.

Morris, G. M.

Odom, T. W.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).

Park, O. O.

W. M. Choi and O. O. Park, Nanotechnology 15, 1767(2004).

Paul, K. E.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).

Plotkin, M. E.

G. G. Denisov, S. V. Kuzikov, and M. E. Plotkin, J. Infrared Millimeter Waves 30, 349 (2009).

Pommet, D. A.

Prentiss, M.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
[PubMed]

Priambodo, P. S.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

Rogers, J. A.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
[PubMed]

Rumpf, R. C.

Shin, D.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

Suleski, T. J.

A. T. Cannistra and T. J. Suleski, J. Micro/Nanolithogr. MEMS MOEMS 9, 013025 (2010).

Sung-Hoon, H.

H. Sung-Hoon, H. A. N. Kang-Soo, H. Kyeong-Jae Byeon, and C. Kyung-Woo, Jpn. J. Appl. Phys. 47, 3699 (2008).

Thurman, S. T.

Tsai, Y. L.

Wang, C. M.

Whitesides, G. M.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
[PubMed]

Wolfe, D. B.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).

Wu, M. L.

Xia, Y.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
[PubMed]

Young, P. P.

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

Zhao, X. M.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
[PubMed]

Appl. Opt.

Appl. Phys. Lett.

D. W. Dobbs, I. Gershkovich, and B. T. Cunningham, Appl. Phys. Lett. 89, 123113 (2006).

J. Infrared Millimeter Waves

G. G. Denisov, S. V. Kuzikov, and M. E. Plotkin, J. Infrared Millimeter Waves 30, 349 (2009).

J. Lightwave Technol.

J. Micro/Nanolithogr. MEMS MOEMS

A. T. Cannistra and T. J. Suleski, J. Micro/Nanolithogr. MEMS MOEMS 9, 013025 (2010).

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

H. Sung-Hoon, H. A. N. Kang-Soo, H. Kyeong-Jae Byeon, and C. Kyung-Woo, Jpn. J. Appl. Phys. 47, 3699 (2008).

Langmuir

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).

Nanotechnology

W. M. Choi and O. O. Park, Nanotechnology 15, 1767(2004).

Opt. Express

Proc. SPIE

R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).

Science

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
[PubMed]

Other

K. R. Hiremath, “Coupled mode theory based modeling and analysis of circular optical microresonators,” Ph.D. dissertation (University of Twente, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section of the GMR structure with layer parameters. Top view of the hexagonal grating design is shown in the inset.

Fig. 2
Fig. 2

(a) HB embossing and (b) Flex microtransfer molding processes.

Fig. 3
Fig. 3

(a) Scanning electron microscope image of the top view of the GMR after deposition, and (b) image of the GMR fabricated on a concave lens ( ROC = 32.4 mm ).

Fig. 4
Fig. 4

Test setup configuration for (a) flat and (b) curved GMR reflectivity measurements.

Fig. 5
Fig. 5

(a) Average GMR performance for different fabrication processes. (b) Modeling results with assumptions described in text. Only TE polarization is shown for brevity because the design is polarization insensitive. Resonance peaks are labeled in nanometers.

Metrics