Abstract

The optical frequency sweep of an actively linearized, ultrabroadband, chirped laser source is characterized through optical heterodyne detection against a fiber-laser frequency comb. Frequency sweeps were measured over approximately 5THz bandwidths from 1530nm to 1570nm. The dominant deviation from linearity resulted from the nonzero dispersion of the fiber delay used as a reference for the sweep linearization. Removing the low-order dispersion effects, the residual sweep nonlinearity was less than 60kHzrms, corresponding to a constant chirp with less than 15ppb deviation across the 5THz sweep.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgere, J.-L. L. Gouët, and F. Bretenaker, Opt. Lett. 32, 484 (2007).
    [CrossRef] [PubMed]
  2. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, Opt. Express 17, 15991 (2009).
    [CrossRef] [PubMed]
  3. H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, Opt. Express 18, 3284 (2010).
    [CrossRef] [PubMed]
  4. P. A. Roos, R. R. Reibel, B. Kaylor, T. Berg, Z. W. Barber, and W. R. Babbitt, Opt. Lett. 34, 3692 (2009).
    [CrossRef] [PubMed]
  5. A. Cabral and J. Rebordao, Opt. Eng. 46, 073602 (2007).
    [CrossRef]
  6. B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
    [CrossRef]
  7. P. DelHaye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photon. 3, 529 (2009).
    [CrossRef]
  8. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, Nat. Photon. 4, 853 (2010).
    [CrossRef]
  9. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, Appl. Opt. 49, 213 (2010).
    [CrossRef] [PubMed]
  10. V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 22, 155 (2010).
    [CrossRef]
  11. N. R. Newbury, I. Coddington, and W. Swann, Opt. Express 18, 7929 (2010).
    [CrossRef] [PubMed]

2010 (5)

2009 (3)

2007 (2)

2004 (1)

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Arcizet, O.

P. DelHaye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photon. 3, 529 (2009).
[CrossRef]

Babbitt, W. R.

Baney, D. M.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Barber, Z. W.

Baumann, E.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, Nat. Photon. 4, 853 (2010).
[CrossRef]

Berg, T.

Bretenaker, F.

Cabral, A.

A. Cabral and J. Rebordao, Opt. Eng. 46, 073602 (2007).
[CrossRef]

Clairon, A.

Coddington, I.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, Nat. Photon. 4, 853 (2010).
[CrossRef]

N. R. Newbury, I. Coddington, and W. Swann, Opt. Express 18, 7929 (2010).
[CrossRef] [PubMed]

Crozatier, V.

DelHaye, P.

P. DelHaye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photon. 3, 529 (2009).
[CrossRef]

Giorgetta, F. R.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, Nat. Photon. 4, 853 (2010).
[CrossRef]

Gorju, G.

Gorodetsky, M. L.

P. DelHaye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photon. 3, 529 (2009).
[CrossRef]

Gouët, J.-L. L.

Holzwarth, R.

P. DelHaye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photon. 3, 529 (2009).
[CrossRef]

Jain, A.

Jiang, H.

Jucha, A.

Kaylor, B.

Kéfélian, F.

Kippenberg, T. J.

P. DelHaye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photon. 3, 529 (2009).
[CrossRef]

Law, J. Y.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Leaird, D. E.

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 22, 155 (2010).
[CrossRef]

Lee, A.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Lemonde, P.

Leyva, V.

Long, C. M.

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 22, 155 (2010).
[CrossRef]

Lorgere, I.

McAlexander, W. I.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Newbury, N. R.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, Nat. Photon. 4, 853 (2010).
[CrossRef]

N. R. Newbury, I. Coddington, and W. Swann, Opt. Express 18, 7929 (2010).
[CrossRef] [PubMed]

Pering, R. D.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Rakuljic, G.

Rebordao, J.

A. Cabral and J. Rebordao, Opt. Eng. 46, 073602 (2007).
[CrossRef]

Reibel, R. R.

Roos, P. A.

Santarelli, G.

Satyan, N.

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 22, 155 (2010).
[CrossRef]

Swann, W.

Swann, W. C.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, Nat. Photon. 4, 853 (2010).
[CrossRef]

Szafraniec, B.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Tan, T. S.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Vasilyev, A.

Weiner, A. M.

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 22, 155 (2010).
[CrossRef]

Yariv, A.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 22, 155 (2010).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, IEEE Trans. Instrum. Meas. 53, 203 (2004).
[CrossRef]

Nat. Photon. (2)

P. DelHaye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photon. 3, 529 (2009).
[CrossRef]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, Nat. Photon. 4, 853 (2010).
[CrossRef]

Opt. Eng. (1)

A. Cabral and J. Rebordao, Opt. Eng. 46, 073602 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic schematic of the LFC source characterization against the fiber-laser frequency comb using optical IQ demodulation.

Fig. 2
Fig. 2

(a) Unwrapped phase (black) of the IQ demodulated heterodyne signal over two comb line crossings. Also shown in gray is the numerical derivative of the phase approximating the instantaneous optical frequency difference between the LFC and nearest comb tooth. (b) Frequency measurement uncertainty (calculated with the overlapping Allan deviation algorithm) for the LFC source at zero chirp (black line) and for the LFC source at 5 THz / s chirp evaluated from the measured f ( t ) (see Fig. 3) after removing the constant chirp (gray curve). At a 20 μs measurement window, the uncertainty is 5 kHz .

Fig. 3
Fig. 3

(a) Measured linear sweep of the LFC source over 5 THz . (b) Residuals from a linear fit to (a). The main deviation from linearity is quadratic due to the residual dispersion of the fiber interferometer. (c) Residuals from a cubic fit to (a), which removes the dispersion-related nonlinearities. The residuals have an rms deviation of only 60 kHz rms over the full 5 THz . At early times, the signal-to-noise ratio is not quite sufficient to avoid phase-unwrapping glitches due to low comb spectral power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = f 0 + C t + D t 2 + E t 3 ,

Metrics