Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dissipative soliton resonance in a passively mode-locked fiber laser

Not Accessible

Your library or personal account may give you access

Abstract

The phenomenon of dissipative soliton resonance (DSR) predicts that an increase of pulse energy by orders of magnitude can be obtained in laser oscillators. Here, we prove that DSR is achievable in a realistic ring laser cavity using nonlinear polarization evolution as the mode-locking mechanism, whose nonlinear transmission function is adjusted through a set of waveplates and a passive polarizer. The governing model accounts explicitly for the arbitrary orientations of the waveplates and the polarizer, as well as the gain saturation in the amplifying medium. It is shown that DSR is achievable with realistic laser settings. Our findings provide an excellent design tool for optimizing the mode-locking performance and the enhancement of energy delivered per pulse by orders of magnitude.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser

Shi-Ke Wang, Qiu-Yi Ning, Ai-Ping Luo, Zhen-Bin Lin, Zhi-Chao Luo, and Wen-Cheng Xu
Opt. Express 21(2) 2402-2407 (2013)

Polarization dynamics of dissipative-soliton-resonance pulses in passively mode-locked fiber lasers

Wenxiong Du, Heping Li, Junwen Li, Zhuang Wang, Pinghe Wang, Zhiyao Zhang, and Yong Liu
Opt. Express 27(6) 8059-8068 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved