Abstract

The phenomenon of dissipative soliton resonance (DSR) predicts that an increase of pulse energy by orders of magnitude can be obtained in laser oscillators. Here, we prove that DSR is achievable in a realistic ring laser cavity using nonlinear polarization evolution as the mode-locking mechanism, whose nonlinear transmission function is adjusted through a set of waveplates and a passive polarizer. The governing model accounts explicitly for the arbitrary orientations of the waveplates and the polarizer, as well as the gain saturation in the amplifying medium. It is shown that DSR is achievable with realistic laser settings. Our findings provide an excellent design tool for optimizing the mode-locking performance and the enhancement of energy delivered per pulse by orders of magnitude.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Haus, J. Sel. Top. Quantum Electron. 6, 1173 (2000).
    [CrossRef]
  2. J. N. Kutz, SIAM Rev. 48, 629 (2006).
    [CrossRef]
  3. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  4. A. Chong, W. H. Renninger, and F. W. Wise, Opt. Lett. 32, 2408 (2007).
    [CrossRef] [PubMed]
  5. F. Li, P. K. A. Wai, and J. N. Kutz, J. Opt. Soc. Am. B 27, 2068 (2010).
    [CrossRef]
  6. A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 68, 033815 (2003).
    [CrossRef]
  7. J. D. Moores, Opt. Commun. 96, 65 (1993).
    [CrossRef]
  8. A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. E 72, 025604R (2005).
    [CrossRef]
  9. E. Ding and J. N. Kutz, J. Opt. Soc. Am. B 26, 2290 (2009).
    [CrossRef]
  10. E. Ding, E. Shlizerman, and J. N. Kutz, “A generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. (to be published).
  11. Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, J. Opt. Soc. Am. B 27, 2336 (2010).
    [CrossRef]
  12. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, Phys. Lett. A 372, 3124 (2008).
    [CrossRef]

2010 (2)

2009 (1)

2008 (1)

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, Phys. Lett. A 372, 3124 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. E 72, 025604R (2005).
[CrossRef]

2003 (1)

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 68, 033815 (2003).
[CrossRef]

2000 (1)

H. Haus, J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

1993 (1)

J. D. Moores, Opt. Commun. 96, 65 (1993).
[CrossRef]

Akhmediev, N.

Ankiewicz, A.

Buckley, J.

Chang, W.

Chong, A.

Ding, E.

E. Ding and J. N. Kutz, J. Opt. Soc. Am. B 26, 2290 (2009).
[CrossRef]

E. Ding, E. Shlizerman, and J. N. Kutz, “A generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. (to be published).

Grelu, Ph.

Haus, H.

H. Haus, J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. E 72, 025604R (2005).
[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 68, 033815 (2003).
[CrossRef]

Kutz, J. N.

F. Li, P. K. A. Wai, and J. N. Kutz, J. Opt. Soc. Am. B 27, 2068 (2010).
[CrossRef]

E. Ding and J. N. Kutz, J. Opt. Soc. Am. B 26, 2290 (2009).
[CrossRef]

J. N. Kutz, SIAM Rev. 48, 629 (2006).
[CrossRef]

E. Ding, E. Shlizerman, and J. N. Kutz, “A generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. (to be published).

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. E 72, 025604R (2005).
[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 68, 033815 (2003).
[CrossRef]

Li, F.

Moores, J. D.

J. D. Moores, Opt. Commun. 96, 65 (1993).
[CrossRef]

Renninger, W.

Renninger, W. H.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. E 72, 025604R (2005).
[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 68, 033815 (2003).
[CrossRef]

Shlizerman, E.

E. Ding, E. Shlizerman, and J. N. Kutz, “A generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. (to be published).

Soto-Crespo, J. M.

Wai, P. K. A.

Wise, F.

Wise, F. W.

J. Opt. Soc. Am. B (3)

J. Sel. Top. Quantum Electron. (1)

H. Haus, J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

Opt. Commun. (1)

J. D. Moores, Opt. Commun. 96, 65 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, Phys. Lett. A 372, 3124 (2008).
[CrossRef]

Phys. Rev. A (1)

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 68, 033815 (2003).
[CrossRef]

Phys. Rev. E (1)

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. E 72, 025604R (2005).
[CrossRef]

SIAM Rev. (1)

J. N. Kutz, SIAM Rev. 48, 629 (2006).
[CrossRef]

Other (1)

E. Ding, E. Shlizerman, and J. N. Kutz, “A generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top: schematic representation of a ring cavity laser that includes quarter-waveplates (QWP), passive polarizer, half-waveplate (HWP), ytterbium-doped amplification, and output coupler. The Yb-doped section of the cavity is fused with standard single-mode fiber (SMF) and treated in a distributed fashion. The angles α 1 , α 2 , α 3 , and α p can all be measured with reasonable accuracy. Bottom: normalized coefficients of the CQGLE as a function of α 1 at α 2 = 0.16 π , α 3 = 0.63 π , α p = 0 , and K = 0.1 .

Fig. 2
Fig. 2

DSR in the case of constant gain. Left: pulse energy ψ 2 as a function of D, with α 1 = 0.7863 π , α 2 = 0.3 π , α 3 = α p = 0 , and K = 0.1 . The rest of the parameters are picked such that g 0 δ = 0.05 and g 0 τ = 0.4 . Right: the corresponding pulse shape (top) and frequency chirp profile (bottom) at D = 1.31 (blue solid curves), D = 1.38 (red dashed curves), and D = 1.392 (green dash-dot curves).

Fig. 3
Fig. 3

DSR in the case of saturating gain. Left: pulse energy ψ 2 as a function of e 0 at different values of D, with g 0 = 2.3991 , τ = 0.1667 , and the rest of the param eters being the same as those used in Fig. 2. Right: the corresponding pulse shape (top) and frequency chirp profile (bottom) at e 0 = 5 (blue solid curves), e 0 = 58 (red dashed curves), and e 0 = 180 (green dash-dot curves) along the D = 1.6 line, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i ψ z + D 2 ψ t t + | ψ | 2 ψ + ν | ψ | 4 ψ = i g ( 1 + τ t 2 ) ψ i δ ψ + i β | ψ | 2 ψ + i μ | ψ | 4 ψ .
δ = Γ log | Q ( 0 ) | ,
γ = 1 + Im ( Q ( 0 ) / Q ( 0 ) ) ,
β = Re ( Q ( 0 ) / Q ( 0 ) ) / γ ,
ν = Im [ ( Q ( 0 ) Q ( 0 ) Q 2 ( 0 ) ) / Q 2 ( 0 ) ] / 2 γ 2 ,
μ = Re [ ( Q ( 0 ) Q ( 0 ) Q 2 ( 0 ) ) / Q 2 ( 0 ) ] / 2 γ 2 ,
Q = 1 2 { e i K [ cos ( 2 α 2 2 α 3 α p ) + i cos ( 2 α 3 α p ) ] × [ i cos ( 2 α 1 α p w ) cos ( α p w ) ] + e i K [ sin ( 2 α 2 2 α 3 α p ) i sin ( 2 α 3 α p ) ] × [ sin ( α p w ) i sin ( 2 α 1 α p w ) ] } ,
g = g 0 ,
g = 2 g 0 1 + ψ 2 / e 0 .

Metrics