Abstract

Photoacoustic microscopy (PAM) offers label-free, optical absorption contrast. A high-speed, high-resolution PAM system in an inverted microscope configuration with a laser pulse repetition rate of 100,000Hz and a stationary ultrasonic transducer was built. Four-dimensional in vivo imaging of microcirculation in mouse skin was achieved at 18 three-dimensional volumes per second with repeated two-dimensional (2D) raster scans of 100 by 50 points. The corresponding 2D B-scan (50 A-lines) frame rate was 1800Hz, and the one-dimensional A-scan rate was 90,000Hz. The lateral resolution is 0.23±0.03μm for Au nanowire imaging, which is 2.0 times below the diffraction limit.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, Med. Phys. 35, 5758 (2008).
    [CrossRef]
  2. L. V. Wang, Nat. Photon. 3, 503 (2009).
    [CrossRef]
  3. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
    [CrossRef] [PubMed]
  4. G. Ku, K. Maslov, L. Li, and L. V. Wang, J. Biomed. Opt. 15, 021302 (2010).
    [CrossRef] [PubMed]
  5. B. Rao, L. Li, K. Maslov, and L. V. Wang, Opt. Lett. 35, 1521 (2010).
    [CrossRef] [PubMed]
  6. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, Opt. Lett. 34, 1771 (2009).
    [CrossRef] [PubMed]
  7. K. Maslov, G. Ku, and L. V. Wang, Proc. SPIE 7564, 75640W (2010).
    [CrossRef]
  8. H. F. Zhang, K. Maslov, and L. V. Wang, Nat. Protoc. 2, 797 (2007).
    [CrossRef] [PubMed]
  9. S. Hu, B. Rao, K. Maslov, and L. V. Wang, Opt. Lett. 35, 1 (2010).
    [CrossRef] [PubMed]
  10. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, Opt. Express 18, 3967(2010).
    [CrossRef] [PubMed]
  11. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
    [CrossRef] [PubMed]
  12. J. Yao, K. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, Opt. Lett. 35, 1419 (2010).
    [CrossRef] [PubMed]
  13. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, Opt. Lett. 31, 3623 (2006).
    [CrossRef] [PubMed]
  14. Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
    [CrossRef] [PubMed]
  15. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, Cancer Res. 69, 7926 (2009).
    [CrossRef] [PubMed]

2010 (6)

2009 (3)

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, Opt. Lett. 34, 1771 (2009).
[CrossRef] [PubMed]

L. V. Wang, Nat. Photon. 3, 503 (2009).
[CrossRef]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, Cancer Res. 69, 7926 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (2)

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, Nat. Protoc. 2, 797 (2007).
[CrossRef] [PubMed]

2006 (2)

Ameri, H.

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Cannata, J. M.

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Fawzi, A.

Galanzha, E. I.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, Cancer Res. 69, 7926 (2009).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, Opt. Lett. 31, 3623 (2006).
[CrossRef] [PubMed]

Gottlieb, E. J.

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Han, P.

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Hu, J.

Hu, S.

Humayun, M. S.

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Jiang, M.

Jiao, S.

Khlebtsov, N. G.

Ku, G.

K. Maslov, G. Ku, and L. V. Wang, Proc. SPIE 7564, 75640W (2010).
[CrossRef]

G. Ku, K. Maslov, L. Li, and L. V. Wang, J. Biomed. Opt. 15, 021302 (2010).
[CrossRef] [PubMed]

Li, L.

G. Ku, K. Maslov, L. Li, and L. V. Wang, J. Biomed. Opt. 15, 021302 (2010).
[CrossRef] [PubMed]

B. Rao, L. Li, K. Maslov, and L. V. Wang, Opt. Lett. 35, 1521 (2010).
[CrossRef] [PubMed]

Maslov, K.

Puliafito, C. A.

Rao, B.

Shashkov, E. V.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, Cancer Res. 69, 7926 (2009).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, Opt. Lett. 31, 3623 (2006).
[CrossRef] [PubMed]

Shi, Y.

Shung, K. K.

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, Opt. Express 18, 3967(2010).
[CrossRef] [PubMed]

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Spring, P. M.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, Cancer Res. 69, 7926 (2009).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Suen, J. Y.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, Cancer Res. 69, 7926 (2009).
[CrossRef] [PubMed]

Sun, L.

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Taber, L. A.

Tuchin, V. V.

Wang, L. V.

S. Hu, B. Rao, K. Maslov, and L. V. Wang, Opt. Lett. 35, 1 (2010).
[CrossRef] [PubMed]

B. Rao, L. Li, K. Maslov, and L. V. Wang, Opt. Lett. 35, 1521 (2010).
[CrossRef] [PubMed]

K. Maslov, G. Ku, and L. V. Wang, Proc. SPIE 7564, 75640W (2010).
[CrossRef]

J. Yao, K. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, Opt. Lett. 35, 1419 (2010).
[CrossRef] [PubMed]

G. Ku, K. Maslov, L. Li, and L. V. Wang, J. Biomed. Opt. 15, 021302 (2010).
[CrossRef] [PubMed]

L. V. Wang, Nat. Photon. 3, 503 (2009).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef] [PubMed]

L. V. Wang, Med. Phys. 35, 5758 (2008).
[CrossRef]

H. F. Zhang, K. Maslov, and L. V. Wang, Nat. Protoc. 2, 797 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Xie, Z.

Xu, X.

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Yao, J.

Zhang, H. F.

Zharov, V. P.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, Cancer Res. 69, 7926 (2009).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, Opt. Lett. 31, 3623 (2006).
[CrossRef] [PubMed]

Zhou, Q.

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, Opt. Express 18, 3967(2010).
[CrossRef] [PubMed]

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

Cancer Res. (1)

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, Cancer Res. 69, 7926 (2009).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

G. Ku, K. Maslov, L. Li, and L. V. Wang, J. Biomed. Opt. 15, 021302 (2010).
[CrossRef] [PubMed]

Med. Phys. (1)

L. V. Wang, Med. Phys. 35, 5758 (2008).
[CrossRef]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Nat. Photon. (1)

L. V. Wang, Nat. Photon. 3, 503 (2009).
[CrossRef]

Nat. Protoc. (1)

H. F. Zhang, K. Maslov, and L. V. Wang, Nat. Protoc. 2, 797 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Proc. SPIE (1)

K. Maslov, G. Ku, and L. V. Wang, Proc. SPIE 7564, 75640W (2010).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (281 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the high-speed, high- resolution optical-resolution photoacoustic microscopy system.

Fig. 2
Fig. 2

Gaussian amplitude curve fitting of a measured Au nanowire line spread function.

Fig. 3
Fig. 3

Imaging field-of-view (FOV) calibration: (a) Maximum amplitude projection (MAP) PA image of a black tape patch acquired with the nonfocused ultrasonic transducer. Gaussian amplitude fittings of the MAP PA signals along the (b) fast (X) axis and the (c) slow (Y) axis give an FWHM FOV of 326 μm along the fast (X) axis and 291 μm along the slow (Y) axis. (d) MAP PA image of a black tape patch acquired with the focused ultrasonic transducer. Gaussian amplitude fittings of the MAP PA signals along the (e) fast (X) axis and the (f) slow (Y) axis give an FWHM FOV of 33 μm along the fast (X) axis and 67 μm along the slow (Y) axis.

Fig. 4
Fig. 4

Maximum amplitude projection (MAP) PA image of RBCs on a 250 μm × 125 μm specimen slide patch.

Fig. 5
Fig. 5

Representative maximum amplitude projection (MAP) PA image of a 50 μm × 25 μm mouse ear patch extracted from a 4D movie (Media 1).

Metrics