Abstract

Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Luppa, L. J. Sokoll, and D. W. Chan, Clin. Chim. Acta 314, 1 (2001).
    [CrossRef] [PubMed]
  2. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
    [CrossRef] [PubMed]
  3. X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
    [CrossRef] [PubMed]
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
    [CrossRef] [PubMed]
  5. D. R. Shankaran, K. V. A. Gobi, and N. Miura, Sens. Actuators B 121, 158 (2007).
    [CrossRef]
  6. B. Hock, Anal. Chim. Acta 347, 177 (1997).
    [CrossRef]
  7. M. A. Baker, Thin Solid Films 69, 359 (1980).
    [CrossRef]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  9. H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
    [CrossRef] [PubMed]
  10. M. Cai and K. Vahala, Opt. Lett. 26, 884 (2001).
    [CrossRef]
  11. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  12. A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
    [CrossRef] [PubMed]
  13. B. E. Little, J. P. Laine, and H. A. Haus, J. Lightwave Technol. 17, 704 (1999).
    [CrossRef]
  14. A. Yariv, Electron. Lett. 36, 321 (2000).
    [CrossRef]

2010 (2)

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef] [PubMed]

2008 (1)

X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

2007 (3)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

D. R. Shankaran, K. V. A. Gobi, and N. Miura, Sens. Actuators B 121, 158 (2007).
[CrossRef]

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

2003 (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

2001 (2)

P. B. Luppa, L. J. Sokoll, and D. W. Chan, Clin. Chim. Acta 314, 1 (2001).
[CrossRef] [PubMed]

M. Cai and K. Vahala, Opt. Lett. 26, 884 (2001).
[CrossRef]

2000 (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

1999 (1)

1997 (1)

B. Hock, Anal. Chim. Acta 347, 177 (1997).
[CrossRef]

1980 (1)

M. A. Baker, Thin Solid Films 69, 359 (1980).
[CrossRef]

Armani, A. M.

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef] [PubMed]

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Baker, M. A.

M. A. Baker, Thin Solid Films 69, 359 (1980).
[CrossRef]

Cai, M.

Chan, D. W.

P. B. Luppa, L. J. Sokoll, and D. W. Chan, Clin. Chim. Acta 314, 1 (2001).
[CrossRef] [PubMed]

Fan, X. D.

X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Gobi, K. V. A.

D. R. Shankaran, K. V. A. Gobi, and N. Miura, Sens. Actuators B 121, 158 (2007).
[CrossRef]

Haus, H. A.

Hock, B.

B. Hock, Anal. Chim. Acta 347, 177 (1997).
[CrossRef]

Hunt, H. K.

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef] [PubMed]

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Laine, J. P.

Little, B. E.

Luppa, P. B.

P. B. Luppa, L. J. Sokoll, and D. W. Chan, Clin. Chim. Acta 314, 1 (2001).
[CrossRef] [PubMed]

Miura, N.

D. R. Shankaran, K. V. A. Gobi, and N. Miura, Sens. Actuators B 121, 158 (2007).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Shankaran, D. R.

D. R. Shankaran, K. V. A. Gobi, and N. Miura, Sens. Actuators B 121, 158 (2007).
[CrossRef]

Shopoua, S. I.

X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Sokoll, L. J.

P. B. Luppa, L. J. Sokoll, and D. W. Chan, Clin. Chim. Acta 314, 1 (2001).
[CrossRef] [PubMed]

Soteropulos, C.

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Srinivasan, A.

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

Sun, Y. Z.

X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Vahala, K.

Vahala, K. J.

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

White, I. M.

X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

Zhu, H. Y.

X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta (2)

X. D. Fan, I. M. White, S. I. Shopoua, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

B. Hock, Anal. Chim. Acta 347, 177 (1997).
[CrossRef]

Clin. Chim. Acta (1)

P. B. Luppa, L. J. Sokoll, and D. W. Chan, Clin. Chim. Acta 314, 1 (2001).
[CrossRef] [PubMed]

Electron. Lett. (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Nano Lett. (1)

A. M. Armani, A. Srinivasan, and K. J. Vahala, Nano Lett. 7, 1823 (2007).
[CrossRef] [PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef] [PubMed]

Sens. Actuators B (1)

D. R. Shankaran, K. V. A. Gobi, and N. Miura, Sens. Actuators B 121, 158 (2007).
[CrossRef]

Sensors (1)

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef] [PubMed]

Thin Solid Films (1)

M. A. Baker, Thin Solid Films 69, 359 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron micrograph and (b) optical micrograph of typical as-fabricated microtoroid.

Fig. 2
Fig. 2

(a) Silica microtoroid surface composition after biotin functionalization and (b) chemical composition of control surfaces after fabrication, surface functionalization, and O 2 plasma treatment for a given amount of time.

Fig. 3
Fig. 3

(a) Fluorescence micrograph of typical biotinylated microtoroid labeled with Texas Red avidin conjugate and (b) fluorescence micrograph of typical biotinylated microtoroid after three rounds of recycling.

Fig. 4
Fig. 4

Effect of surface functionalization and recycling on the quality factor of the microtoroids at each recycling step. Insets: (a) Transmission spectrum of as-fabricated toroid, showing a single, high-Q resonance (data connected by black curve) with its corresponding Lorentz fit (red, smoother curve), and (b) optical micrograph of typical microtoroid after three rounds of recycling.

Metrics