Abstract

The conversion of the FM-to-AM effect induced by intermodal interference in the broadband large-mode-area (LMA) fiber laser was first investigated theoretically and experimentally. The numerical simulation results show that the spectrum transfer functions are different at different positions of the LMA fiber end face owing to the intermodal interference, so the output broadband pulses are different. We attain the similar results in the experiment when measuring the output pulse with the single mode fiber sampling oscilloscope. Whereas there is no amplitude modulation for the output pulse when measured by the bulk detector owing to the orthogonal characteristic of the eigenmodes.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Haynam, P. J. Wegner, J. M. Auerbach, and M. W. Bowers, Appl. Opt. 46, 3276 (2007).
    [CrossRef] [PubMed]
  2. A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
    [CrossRef]
  3. J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
    [CrossRef]
  4. X. D. Huang and X. M. Zhang, Acta Phys. Sin. 59, 1857 (2010).
  5. D. Penninckx and N. Beck, IEEE Photon. Technol. Lett. 18, 856 (2006).
    [CrossRef]
  6. D. Penninckx, N. Beck, J. F. Gleyze, and L. Videau, J. Lightwave Technol. 24, 4197 (2006).
    [CrossRef]
  7. D. P. Xu, J. J. Wang, M. Z. Li, H. H. Lin, R. Zhang, and Y. Deng, Opt. Express 18, 6621 (2010).
    [CrossRef]
  8. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, Opt. Lett. 31, 3423 (2006).
    [CrossRef] [PubMed]
  9. M. L. Gong, Y. Y. Yuan, C. Li, P. Yan, H. T. Zhang, and S. Y. Liao, Opt. Express 15, 3236 (2007).
    [CrossRef] [PubMed]
  10. I. Turek, I. Martincek, and R. Stransky, Opt. Eng. 39, 1304 (2000).
    [CrossRef]

2010 (2)

2007 (2)

2006 (4)

R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, Opt. Lett. 31, 3423 (2006).
[CrossRef] [PubMed]

D. Penninckx, N. Beck, J. F. Gleyze, and L. Videau, J. Lightwave Technol. 24, 4197 (2006).
[CrossRef]

D. Penninckx and N. Beck, IEEE Photon. Technol. Lett. 18, 856 (2006).
[CrossRef]

A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
[CrossRef]

2000 (1)

I. Turek, I. Martincek, and R. Stransky, Opt. Eng. 39, 1304 (2000).
[CrossRef]

1999 (1)

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

Auerbach, J. M.

Beck, N.

D. Penninckx and N. Beck, IEEE Photon. Technol. Lett. 18, 856 (2006).
[CrossRef]

A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
[CrossRef]

D. Penninckx, N. Beck, J. F. Gleyze, and L. Videau, J. Lightwave Technol. 24, 4197 (2006).
[CrossRef]

Bowers, M. W.

Browning, D. F.

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

Coic, H.

A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
[CrossRef]

Deng, Y.

Farrow, R. L.

Gleyze, J. F.

A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
[CrossRef]

D. Penninckx, N. Beck, J. F. Gleyze, and L. Videau, J. Lightwave Technol. 24, 4197 (2006).
[CrossRef]

Gong, M. L.

Hadley, G. R.

Haynam, C. A.

Huang, X. D.

X. D. Huang and X. M. Zhang, Acta Phys. Sin. 59, 1857 (2010).

Jolly, A.

A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
[CrossRef]

Kliner, D. A. V.

Li, C.

Li, M. Z.

Liao, S. Y.

Lin, H. H.

Martincek, I.

I. Turek, I. Martincek, and R. Stransky, Opt. Eng. 39, 1304 (2000).
[CrossRef]

Penninckx, D.

D. Penninckx, N. Beck, J. F. Gleyze, and L. Videau, J. Lightwave Technol. 24, 4197 (2006).
[CrossRef]

A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
[CrossRef]

D. Penninckx and N. Beck, IEEE Photon. Technol. Lett. 18, 856 (2006).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

Smith, A. V.

Stransky, R.

I. Turek, I. Martincek, and R. Stransky, Opt. Eng. 39, 1304 (2000).
[CrossRef]

Turek, I.

I. Turek, I. Martincek, and R. Stransky, Opt. Eng. 39, 1304 (2000).
[CrossRef]

Videau, L.

D. Penninckx, N. Beck, J. F. Gleyze, and L. Videau, J. Lightwave Technol. 24, 4197 (2006).
[CrossRef]

A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
[CrossRef]

Wang, J. J.

Wegner, P. J.

Wilcox, R. B.

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

Xu, D. P.

Yan, P.

Yuan, Y. Y.

Zhang, H. T.

Zhang, R.

Zhang, X. M.

X. D. Huang and X. M. Zhang, Acta Phys. Sin. 59, 1857 (2010).

Acta Phys. Sin. (1)

X. D. Huang and X. M. Zhang, Acta Phys. Sin. 59, 1857 (2010).

Appl. Opt. (1)

C. R. Phys. (1)

A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, C. R. Phys. 7, 198 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Penninckx and N. Beck, IEEE Photon. Technol. Lett. 18, 856 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

I. Turek, I. Martincek, and R. Stransky, Opt. Eng. 39, 1304 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experiment scheme of the LMA fiber laser system. (b) The measurement of output pulse using an SMF sampling oscilloscope.

Fig. 2
Fig. 2

Input signal pulse for the LMA fiber laser system measured by the SMF sampling oscilloscope.

Fig. 3
Fig. 3

Measured output pulse from the 25 / 250 μm LMA fiber amplifier by the SMF sampling oscilloscope (a) at a position of the fiber end face, (b) at another position of the fiber end face. The calculated output pulse from the 25 / 250 μm LMA fiber amplifier (c) at the position C of the fiber end face, (d) at the position B of the fiber end face.

Fig. 4
Fig. 4

Spectrum for the input phase modulated pulse and the normalized spectrum transfer function of the intermodal interference at different positions of the fiber end face. Inset appoints the positions in the fiber core for 25 / 250 μm LMA fiber.

Fig. 5
Fig. 5

Output pulse from the 25 / 250 μm LMA fiber amplifier measured by a bulk detector oscilloscope at the whole fiber end face.

Tables (1)

Tables Icon

Table 1 Values of the Basic Parameters of the Input Pulse

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u ( ω , r , φ , z , t ) = j = 1 N a j ψ j ( r , φ ) exp [ i ( ω t + β j z ) ] ,
I ( ω , r , φ , z , t ) = u ( ω , r , φ , z , t ) × u * ( ω , r , φ , z , t ) .
E ( t ) = exp ( 1 2 ( t T 0 ) 30 ) exp [ i σ sin ( 2 π Ω t ) ] ,
I ( ω , z , t ) = S I ( ω , r , φ , z , t ) r d r d φ = S j = 1 N a j 2 ψ j 2 ( r , φ ) r d r d φ + 2 S a 1 a 2 ψ 1 ( r , φ ) ψ 2 ( r , φ ) r d r d φ cos [ ( β 1 β 2 ) z ] + = S j = 1 N a j 2 ψ j 2 ( r , φ ) 2 r d r d φ ,

Metrics