Abstract

A multimode linear cavity and a single-mode unidirectional ring cavity fiber laser with meter-long cavity lengths are shown to exhibit frequency noise limited by fundamental thermodynamic noise from 100Hz to 100kHz. Their measured spectra agree closely with theoretically derived thermodynamic noise and the characteristic dependence of the frequency noise power spectrum on the inverse of the cavity length is observed. The unidirectional ring laser exhibits a frequency noise of 2Hz/Hz1/2 at 1kHz, one of the lowest published values to date from a free-running laser. The multimode linear cavity laser is shown to be a suitable candidate for thermal-noise-limited, meter-long fiber laser strain sensors with a strain resolution of 14fϵ/Hz1/2 at 1kHz.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Heurs, V. M. Quetschke, B. Willke, K. Danzmann, and I. Freitag, Opt. Lett. 29, 2148 (2004).
    [CrossRef] [PubMed]
  2. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
    [CrossRef]
  3. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1999), Section 7.9.
  4. R. E. Bartolo, A. Tveten, and C. K. Kirkendall, Proc. SPIE 7503, 750370 (2009).
    [CrossRef]
  5. K. H. Wanser, Electron. Lett. 28, 53 (1992).
    [CrossRef]
  6. S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
    [CrossRef]
  7. S. Foster, Phys. Rev. A 78, 013820 (2008).
    [CrossRef]
  8. S. Foster, G. A. Cranch, and A. Tikhomirov, Phys. Rev. A 79, 053802 (2009).
    [CrossRef]
  9. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Lambing, and D. N. Payne, Opt. Lett. 20, 875 (1995).
    [CrossRef] [PubMed]
  10. J. U. de Arruda and J. Blake, Opt. Lett. 23, 1179 (1998)
    [CrossRef]
  11. K. P. Koo and A. D. Kersey, J. Lightwave Technol. 13, 1243 (1995).
    [CrossRef]

2009 (2)

R. E. Bartolo, A. Tveten, and C. K. Kirkendall, Proc. SPIE 7503, 750370 (2009).
[CrossRef]

S. Foster, G. A. Cranch, and A. Tikhomirov, Phys. Rev. A 79, 053802 (2009).
[CrossRef]

2008 (2)

S. Foster, Phys. Rev. A 78, 013820 (2008).
[CrossRef]

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

2007 (1)

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

2004 (1)

1998 (1)

1995 (2)

1992 (1)

K. H. Wanser, Electron. Lett. 28, 53 (1992).
[CrossRef]

Bartolo, R. E.

R. E. Bartolo, A. Tveten, and C. K. Kirkendall, Proc. SPIE 7503, 750370 (2009).
[CrossRef]

Blake, J.

Cheng, Y.

Cranch, G. A.

S. Foster, G. A. Cranch, and A. Tikhomirov, Phys. Rev. A 79, 053802 (2009).
[CrossRef]

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

Danzmann, K.

de Arruda, J. U.

Flockhart, G. M. H.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

Foster, S.

S. Foster, G. A. Cranch, and A. Tikhomirov, Phys. Rev. A 79, 053802 (2009).
[CrossRef]

S. Foster, Phys. Rev. A 78, 013820 (2008).
[CrossRef]

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

Freitag, I.

Heurs, M.

Kersey, A. D.

K. P. Koo and A. D. Kersey, J. Lightwave Technol. 13, 1243 (1995).
[CrossRef]

Kirkendall, C. K.

R. E. Bartolo, A. Tveten, and C. K. Kirkendall, Proc. SPIE 7503, 750370 (2009).
[CrossRef]

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

Koo, K. P.

K. P. Koo and A. D. Kersey, J. Lightwave Technol. 13, 1243 (1995).
[CrossRef]

Kringlebotn, J. T.

Lambing, R. I.

Loh, W. H.

Milnes, M.

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

Payne, D. N.

Quetschke, V. M.

Svelto, O.

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1999), Section 7.9.

Tikhomirov, A.

S. Foster, G. A. Cranch, and A. Tikhomirov, Phys. Rev. A 79, 053802 (2009).
[CrossRef]

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

Tveten, A.

R. E. Bartolo, A. Tveten, and C. K. Kirkendall, Proc. SPIE 7503, 750370 (2009).
[CrossRef]

Wanser, K. H.

K. H. Wanser, Electron. Lett. 28, 53 (1992).
[CrossRef]

Willke, B.

Electron. Lett. (1)

K. H. Wanser, Electron. Lett. 28, 53 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007).
[CrossRef]

IEEE Sens. J. (1)

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008).
[CrossRef]

J. Lightwave Technol. (1)

K. P. Koo and A. D. Kersey, J. Lightwave Technol. 13, 1243 (1995).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (2)

S. Foster, Phys. Rev. A 78, 013820 (2008).
[CrossRef]

S. Foster, G. A. Cranch, and A. Tikhomirov, Phys. Rev. A 79, 053802 (2009).
[CrossRef]

Proc. SPIE (1)

R. E. Bartolo, A. Tveten, and C. K. Kirkendall, Proc. SPIE 7503, 750370 (2009).
[CrossRef]

Other (1)

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1999), Section 7.9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Relative intensity noise and (inset) mode structure of the MM fiber laser.

Fig. 2
Fig. 2

( 2 S ν ) 1 / 2 for (a) the DFB and MM fiber lasers [solid curves are ( 2 S T ) 1 / 2 and dashed curves are ( 2 S e ) 1 / 2 and ( 2 S Er ) 1 / 2 ] and (b) the unidirectional ring cavity.

Tables (1)

Tables Icon

Table 1 Parameter Values Used in Thermal Noise Calculations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ν sp ( f ) = ( 1 + α 2 ) n sp h ν l 3 Q 2 P ,
S ν th ( f ) = ν l 2 q 2 L 2 1 S T ( f ) ,
RIN ( f ) = S Δ P Δ f P 2 ,

Metrics