Abstract

We propose and analyze a novel (to our knowledge) approach to implement the spectral self-imaging effect of optical frequency combs. The technique is based on time-domain multilevel phase-only modulation of a periodic optical pulse train. The method admits both infinite- and finite-duration periodic pulse sequences. We show that the fractional spectral self-imaging effect allows one to reduce by an integer factor the comb frequency spacing. Numerical simulation results support our theoretical analysis.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Jannson and J. Jannson, J. Opt. Soc. Am. 71, 1373 (1981).
    [CrossRef]
  2. J. Azaña and M. A. Muriel, Opt. Lett. 24, 1672 (1999).
    [CrossRef]
  3. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, J. Lightwave Technol. 16, 405 (1998).
    [CrossRef]
  4. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, Opt. Lett. 25, 1481 (2000).
    [CrossRef]
  5. J. Azaña, Opt. Lett. 30, 227 (2005).
    [CrossRef] [PubMed]
  6. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, J. Lightwave Technol. 18, 825 (2000).
    [CrossRef]
  7. J. Caraquitena and J. Martí, Opt. Lett. 34, 2084 (2009).
    [CrossRef] [PubMed]
  8. J. Azaña and S. Gupta, Opt. Express 14, 4270 (2006).
    [CrossRef] [PubMed]
  9. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 716 (2007).
    [CrossRef] [PubMed]
  10. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
    [CrossRef]
  11. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  12. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [CrossRef]
  13. A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
    [CrossRef]
  14. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, Opt. Lett. 33, 1047 (2008).
    [CrossRef] [PubMed]
  15. P. J. Winzer and R. J. Essiambre, J. Lightwave Technol. 24, 4711 (2006).
    [CrossRef]

2009 (1)

2008 (1)

2007 (2)

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 716 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

2006 (2)

2005 (1)

2000 (3)

1999 (1)

1998 (1)

1994 (2)

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

1981 (1)

Agogliati, B.

Arahira, S.

Arcangeli, L.

Auld, B. A.

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Azaña, J.

Bellemare, A.

Belmonte, M.

Bloom, D. M.

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Caraquitena, J.

Essiambre, R. J.

Foster, M. A.

Gaeta, A. L.

Geraghty, D. F.

Godil, A. A.

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Gupta, S.

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Ibsen, M.

Jannson, J.

Jannson, T.

Jiang, Z.

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 716 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Karasek, M.

Kolner, B. H.

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

Kunimatsu, D.

Kutsuzawa, S.

Laporta, P.

LaRochelle, S.

Leaird, D. E.

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 716 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Lipson, M.

Longhi, S.

Marano, M.

Martí, J.

Matsui, Y.

Muriel, M. A.

Ogawa, Y.

Pruneri, V.

Rochette, M.

Salem, R.

Svelto, O.

Tetu, M.

Turner, A. C.

Weiner, A. M.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 716 (2007).
[CrossRef] [PubMed]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Winzer, P. J.

Zervas, M. N.

IEEE J. Quantum Electron. (2)

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

A. A. Godil, B. A. Auld, and D. M. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

Nat. Photon. (1)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of the temporal Talbot effect using (a) a quadratic phase-only filter and (b) line-by-line phase-only filtering. In both cases, two-times repetition-rate multiplication is shown, i.e., r = 2 [Eqs. (1, 2), respectively].

Fig. 2
Fig. 2

Illustration of the spectral Talbot effect (a) using quadratic phase modulation in the time domain (time lens) and (b) by multilevel time phase modulation. In both examples, r = 2 [Eqs. (3, 4), respectively], so that the frequency spacing is reduced by a factor of 2.

Fig. 3
Fig. 3

Results from the simulation of the spectral Talbot effect with infinite duration pulse trains: (a) input pulse train, (b) input frequency comb, (c) output frequency comb after time-domain modulation with s = 1 , r = 1 in Eq. (4), obtaining a comb shift by half of a period, (d) output frequency comb after time-domain modulation assuming s = 1 , r = 2 in Eq. (4).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ 2 = ± s r 2 π ω rep 2 ,
ϕ ( ω n ) = ± s r π n 2 .
φ = ± s r ω rep 2 4 π ,
φ n = ± s r π n 2 ,

Metrics