Abstract

Recently introduced surface nanoscale axial photonics (SNAP) makes it possible to fabricate high-Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate superaccurate fabrication of high-Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using CO2 laser and UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2Å in variation of the effective fiber radius.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), postdeadline paper PDA 8.
  2. M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express (to be published).
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University, 2008).
  4. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
    [CrossRef]
  5. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
    [CrossRef]
  6. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
    [CrossRef]
  7. M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
    [CrossRef]
  8. A. Q. Tool, L. W. Tilton, and J. B. Saunders, J. Res. Natl. Bur. Stand. 38, 519 (1947).
  9. H. Bach and N. Neuroth, eds., The Properties of Optical Glass (Springer Verlag, 1995).
  10. M. Sumetsky, Opt. Lett. 29, 8 (2004).
    [CrossRef]
  11. T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
    [CrossRef]
  12. M. Sumetsky and Y. Dulashko, Opt. Lett. 35, 4006 (2010).
    [CrossRef]
  13. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
    [CrossRef]
  14. J. W. Fleming, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.
  15. H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, Appl. Phys. Lett. 68, 3069 (1996).
    [CrossRef]
  16. K. Dossou, S. LaRochelle, and M. Fontaine, J. Lightwave Technol. 20, 1463 (2002).
    [CrossRef]
  17. A. B. Matsko, A. A. Savchenkov, and L. Maleki, Opt. Lett. 30, 3066 (2005).
    [CrossRef]
  18. M. Sumetsky, Opt. Express 13, 6354 (2005).
    [CrossRef]

2010 (4)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

M. Sumetsky and Y. Dulashko, Opt. Lett. 35, 4006 (2010).
[CrossRef]

2006 (1)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

2005 (2)

2004 (2)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

M. Sumetsky, Opt. Lett. 29, 8 (2004).
[CrossRef]

2002 (1)

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

1996 (1)

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, Appl. Phys. Lett. 68, 3069 (1996).
[CrossRef]

1947 (1)

A. Q. Tool, L. W. Tilton, and J. B. Saunders, J. Res. Natl. Bur. Stand. 38, 519 (1947).

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Cochet, F.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, Appl. Phys. Lett. 68, 3069 (1996).
[CrossRef]

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Dossou, K.

Dulashko, Y.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Fini, J. M.

M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express (to be published).

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

J. W. Fleming, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.

Fonjallaz, P.-Y.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, Appl. Phys. Lett. 68, 3069 (1996).
[CrossRef]

Fontaine, M.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University, 2008).

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

LaRochelle, S.

Limberger, H. G.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, Appl. Phys. Lett. 68, 3069 (1996).
[CrossRef]

Maleki, L.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, Opt. Lett. 30, 3066 (2005).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University, 2008).

Melloni, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Monberg, E. M.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Morichetti, F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Notomi, M.

M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

O’Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Salathé, R. P.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, Appl. Phys. Lett. 68, 3069 (1996).
[CrossRef]

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Saunders, J. B.

A. Q. Tool, L. W. Tilton, and J. B. Saunders, J. Res. Natl. Bur. Stand. 38, 519 (1947).

Savchenkov, A. A.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Sumetsky, M.

M. Sumetsky and Y. Dulashko, Opt. Lett. 35, 4006 (2010).
[CrossRef]

M. Sumetsky, Opt. Express 13, 6354 (2005).
[CrossRef]

M. Sumetsky, Opt. Lett. 29, 8 (2004).
[CrossRef]

M. Sumetsky, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), postdeadline paper PDA 8.

M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express (to be published).

Tilton, L. W.

A. Q. Tool, L. W. Tilton, and J. B. Saunders, J. Res. Natl. Bur. Stand. 38, 519 (1947).

Tool, A. Q.

A. Q. Tool, L. W. Tilton, and J. B. Saunders, J. Res. Natl. Bur. Stand. 38, 519 (1947).

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University, 2008).

Wisk, P.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Yablon, A. D.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, and J. Jasapara, Appl. Phys. Lett. 84, 19 (2004).
[CrossRef]

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, Appl. Phys. Lett. 68, 3069 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

IEEE Photon. J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Res. Natl. Bur. Stand. (1)

A. Q. Tool, L. W. Tilton, and J. B. Saunders, J. Res. Natl. Bur. Stand. 38, 519 (1947).

Opt. Express (1)

Opt. Lett. (3)

Rep. Prog. Phys. (1)

M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

Other (5)

H. Bach and N. Neuroth, eds., The Properties of Optical Glass (Springer Verlag, 1995).

M. Sumetsky, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), postdeadline paper PDA 8.

M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express (to be published).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton University, 2008).

J. W. Fleming, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Illustration of a SNAP device composed of a sequence of bottle microresonators formed by nanoscale variation of the optical fiber radius. Light is coupled into the microresonators with a microfiber, which is connected to the light source and detector.

Fig. 2.
Fig. 2.

Illustration of the setups for nanoscale modification of the optical fiber radius and refractive index: (a) with a focused CO2 laser beam exposure; (b) with a UV laser beam exposure through an amplitude mask.

Fig. 3.
Fig. 3.

Series of microresonators created by annealing with (a) different and (b) similar CO2 laser beam powers. (c) Series of microresonators created with the UV beam exposure through an amplitude mask.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β(z,λ)=(2πn0/λres)[Δreff(z)/r0(λλresiγres)/λres]1/2,
Δreff(z)=Δr¯(z)+Δn¯(z)r0/n0,
Azz+β2(z,λ)A=Cδ(zz1),
ΔλFSR=λres2(2πn0)1(r0Reff)1/2.

Metrics