Abstract

We report on the design, fabrication, and characterization of temperature insensitive strip silicon-on-insulator racetrack resonators. The influence of various parameters, such as waveguide width, waveguide height, ring radius, coupling length, ring gap, and operating wavelength, on temperature-dependent wavelength shift is examined. A resonant wavelength shift of 0.2pm/K at a 1550nm wavelength is measured for 335nm×220nm waveguides. A significant reduction of waveguide propagation losses, improved ring Q value, and higher extinction ratio are obtained after overlaying the silicon waveguides with a polymer cladding.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Huang and X. Yan, J. Opt. Soc. Am. B 20, 1326 (2003).
    [CrossRef]
  2. M. Uenuma and T. Moooka, Opt. Lett. 34, 599 (2009).
    [CrossRef] [PubMed]
  3. B. Guha, B. B. C. Kyotoku, and M. Lipson, Opt. Express 18, 3487 (2010).
    [CrossRef] [PubMed]
  4. W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
    [CrossRef]
  5. J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, J. Lightwave Technol. 25, 2236 (2007).
    [CrossRef]
  6. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, Opt. Express 17, 14627(2009).
    [CrossRef] [PubMed]
  7. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, Opt. Express 18, 17631 (2010).
    [CrossRef] [PubMed]
  8. H. S. Choi and A. M. Armani, Appl. Phys. Lett. 97, 223306(2010).
    [CrossRef]
  9. www.chemoptics.co.kr.

2010 (3)

2009 (2)

2008 (1)

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

2007 (1)

2003 (1)

Ahn, H.

Armani, A. M.

H. S. Choi and A. M. Armani, Appl. Phys. Lett. 97, 223306(2010).
[CrossRef]

Baets, R.

Bogaerts, W.

Choi, H. S.

H. S. Choi and A. M. Armani, Appl. Phys. Lett. 97, 223306(2010).
[CrossRef]

Dumon, P.

Guha, B.

Han, X.

Hu, J.

Huang, M.

Izuhara, T.

Jian, X.

Kim, D. J.

Kim, G.

Kimerling, L.

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

Kyotoku, B. B. C.

Lee, J. M.

Lipson, M.

Michel, J.

Moooka, T.

Morthier, G.

Park, S. H.

Raghunathan, V.

Teng, J.

Uenuma, M.

Yan, X.

Ye, W. N.

Zhang, H.

Zhao, M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Modeled structure of SOI strip waveguide. Inset: scanning electron microscopy of a racetrack resonator. (b) Measured refractive index of the polymer film as a function of temperature [9].

Fig. 2
Fig. 2

Simulated TDWS for the TE mode as a function of different waveguide widths ( H = 220 nm , λ r = 1550 nm ). Inset: parabolic resonant wavelength shift occurs in the narrow range of waveguide widths and shifts to higher values when waveguide height decreases.

Fig. 3
Fig. 3

Transmission spectrum of a racetrack resonator (a) before and (b) after overlaying a polymer cladding ( W = 323 nm , R = 20 μm , CL = 9 μm , G = 300 nm ). (c) Resonant wavelength shift as a function of temperature for different waveguide widths and ring coupling lengths for the radius of R = 20 μm ( CL ( 323 nm ) = 9 μm , CL ( 330 nm ) = 6 μm , CL ( 335 nm ) = 8 μm , G = 300 nm ). (d) Propagation losses for strip waveguides at an operating wavelength of 1550 nm .

Fig. 4
Fig. 4

Measured TDWS for a 332 nm × 220 nm strip racetrack resonator for radii of (a)  R = 10 μm , (b)  R = 30 μm , and (c)  R = 40 μm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

131 + 0.278 · λ [ nm ] W [ nm ] 125 + 0.280 · λ [ nm ] .

Metrics