Abstract

We report on the realization of long-range dielectric-loaded surface plasmon polariton waveguides (LR-DLSPPWs) consisting of straight and bent subwavelength dielectric ridges deposited on thin and narrow metal stripes supported by a dielectric buffer layer covering a low-index substrate. Using imaging with a near-field optical microscope and end-fire coupling with a tapered fiber connected to a tunable laser at telecommunication wavelengths (14251545nm), we demonstrate low-loss (propagation length 500μm) and well-confined (mode width 1μm) LR-DLSPPW mode guiding and determine the propagation and bend loss.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed. (Springer, 1988).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).
    [CrossRef]
  3. T. Holmgaard and S. I. Bozhevolnyi, Phys. Rev. B 75, 245405 (2007).
    [CrossRef]
  4. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, Opt. Express 16, 13585 (2008).
    [CrossRef] [PubMed]
  5. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, Opt. Express 18, 5314 (2010).
    [CrossRef] [PubMed]
  6. P. Berini, Phys. Rev. B 61, 10484 (2000).
    [CrossRef]
  7. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, Opt. Express 18, 23009 (2010).
    [CrossRef] [PubMed]
  8. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, J. Lightwave Technol. 29, 1473 (2011).
    [CrossRef]
  9. L. Liu, Z. Han, and S. He, Opt. Express 13, 6645 (2005).
    [CrossRef] [PubMed]
  10. Micro Resist Technology GmbH, Berlin, Germany, www.microresist.de.
  11. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998).
  12. S.I.Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (World Scientific, 2008).
    [CrossRef]
  13. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

2009 (1)

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

T. Holmgaard and S. I. Bozhevolnyi, Phys. Rev. B 75, 245405 (2007).
[CrossRef]

2005 (1)

2000 (1)

P. Berini, Phys. Rev. B 61, 10484 (2000).
[CrossRef]

Andersen, T. B.

Berini, P.

P. Berini, Phys. Rev. B 61, 10484 (2000).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Chen, Z.

Dereux, A.

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
[CrossRef] [PubMed]

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
[CrossRef] [PubMed]

Ghatak, A.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998).

Gosciniak, J.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).
[CrossRef]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
[CrossRef] [PubMed]

Han, Z.

He, S.

Holmgaard, T.

Kjelstrup-Hansen, J.

Krasavin, A. V.

Liu, L.

Markey, L.

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed. (Springer, 1988).

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998).

Volkov, V. S.

Weeber, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
[CrossRef] [PubMed]

Zayats, A. V.

J. Lightwave Technol. (1)

Nano Lett. (1)

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009).
[CrossRef] [PubMed]

Nat. Photon. (1)

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (2)

T. Holmgaard and S. I. Bozhevolnyi, Phys. Rev. B 75, 245405 (2007).
[CrossRef]

P. Berini, Phys. Rev. B 61, 10484 (2000).
[CrossRef]

Other (4)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed. (Springer, 1988).

Micro Resist Technology GmbH, Berlin, Germany, www.microresist.de.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1998).

S.I.Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (World Scientific, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic layout for the cross section of the fabricated LR-DLSPPW structure, with a PMMA ridge on top of a gold stripe deposited on an underlying Ormoclear buffer layer. The whole structure is supported by a low-index layer of Cytop (which ensures mode confinement to the buffer and ridge region). The inset (time-averaged electric field distribution) represents the modal structure of the fundamental LR-DLSPPW mode calculated at λ 1550 nm . Optical microscope top-view images of (b) fragment of a cleaved sample edge, (c) LR-DLSPPW termination with a short 750 nm period grating, (d) coupling arrangement superimposed with the far-field image taken at the excitation wavelength λ 1500 nm with an infrared camera showing the mode track propagation and a bright outcoupling spot at the grating, (e) abrupt waveguide bend with the angle θ 14.3 ° , and (f) the S bend with 10 μm displacement over a distance of 20 μm .

Fig. 2
Fig. 2

Pseudocolor (a) topographical and near-field optical images ( 3.6 μm × 36 μm ) taken at λ (b) 1450 and (c)  1525 nm . The LR-DLSPPW mode propagates upward in the vertical direction. (d) Cross sections of the near-field optical images along the propagation direction or perpendicular to it (featuring the FWHM of the transverse optical signal distribution). The exponential dependences fitted by the least-square method to the signal dependences along the propagation direction are also shown. (e) LR-DLSPPW mode propagation length as a function of light wavelength (experimental data are represented by the filled circles).

Fig. 3
Fig. 3

Pseudocolor (a) and (c) topographical and (b) and (d) near-field optical images of different sizes: (a) and (b)  21.3 μm × 4.3 μm and (c) and (d)  38.4 μm × 13.6 μm . SNOM images were recorded at different wavelengths with shear-force feedback: (b) 1500 and (d)  1450 nm . The LR-DLSPPW mode propagates from left to right.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( θ ) exp ( 1 4 k 0 2 N eff 2 θ 2 w 2 ) ,

Metrics