Abstract

We evaluate a theoretical model based on the electric field propagation method but applied for the first time to amorphous perfluorinated graded-index polymer optical fibers (PF GIPOFs). The belief is that a better understanding of the factors that affect the fiber frequency response will prove very useful in increasing the performance of PF-GIPOF-based optical links in real situations. The influence of some parameters involved in the frequency response is addressed, and results show experimental data that validate, with tolerable discrepancy, the model described applied to this kind of optical fibers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. FTTH Handbook, available at http://www.ftthcouncil.eu (FTTH Council, 2010).
  2. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, J. Lightwave Technol. 28, 352 (2010).
    [CrossRef]
  3. I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
    [CrossRef]
  4. I. Gasulla and J. Capmany, Opt. Express 14, 9051 (2006).
    [CrossRef] [PubMed]
  5. B. E. A. Saleh and R. M. Abdula, Fiber Integr. Opt. 5, 161 (1985).
    [CrossRef]
  6. J. Capmany, B. Ortega, D. Pastor, and S. Sales, J. Lightwave Technol. 23, 702 (2005).
    [CrossRef]
  7. M. J. Hackert, J. Lightwave Technol. 10, 125 (1992).
    [CrossRef]
  8. D. Donlagic, J. Lightwave Technol. 23, 3526 (2005).
    [CrossRef]
  9. G. Yabre, J. Lightwave Technol. 18, 869 (2000).
    [CrossRef]
  10. K. Tatekura, K. Itoh, and T. Matsumoto, IEEE Trans. Microwave Theory Tech. 26, 487 (1978).
    [CrossRef]
  11. A. Polley, “High performance multimode fiber systems: a comprehensive approach,” Ph.D. thesis (Georgia Institute of Technology, 2008).
  12. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, J. Lightwave Technol. 21, 111 (2003).
    [CrossRef]
  13. T. Ishigure, Y. Koike, and J. W. Fleming, J. Lightwave Technol. 18, 178 (2000).
    [CrossRef]

2010 (1)

2006 (1)

2005 (2)

2003 (2)

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, J. Lightwave Technol. 21, 111 (2003).
[CrossRef]

2000 (2)

1992 (1)

M. J. Hackert, J. Lightwave Technol. 10, 125 (1992).
[CrossRef]

1985 (1)

B. E. A. Saleh and R. M. Abdula, Fiber Integr. Opt. 5, 161 (1985).
[CrossRef]

1978 (1)

K. Tatekura, K. Itoh, and T. Matsumoto, IEEE Trans. Microwave Theory Tech. 26, 487 (1978).
[CrossRef]

Abdula, R. M.

B. E. A. Saleh and R. M. Abdula, Fiber Integr. Opt. 5, 161 (1985).
[CrossRef]

Breyer, F.

Capmany, J.

Donlagic, D.

Fleming, J. W.

Gasulla, I.

Golowich, S. E.

Hackert, M. J.

M. J. Hackert, J. Lightwave Technol. 10, 125 (1992).
[CrossRef]

Ishigure, T.

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

T. Ishigure, Y. Koike, and J. W. Fleming, J. Lightwave Technol. 18, 178 (2000).
[CrossRef]

Itoh, K.

K. Tatekura, K. Itoh, and T. Matsumoto, IEEE Trans. Microwave Theory Tech. 26, 487 (1978).
[CrossRef]

Khoe, G. D.

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

Knudsen, E.

Koike, Y.

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

T. Ishigure, Y. Koike, and J. W. Fleming, J. Lightwave Technol. 18, 178 (2000).
[CrossRef]

Koonen, A. M. J.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, J. Lightwave Technol. 28, 352 (2010).
[CrossRef]

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

Lee, S. C. J.

Matsumoto, T.

K. Tatekura, K. Itoh, and T. Matsumoto, IEEE Trans. Microwave Theory Tech. 26, 487 (1978).
[CrossRef]

Okonkwo, C.

Ortega, B.

Pastor, D.

Polley, A.

A. Polley, “High performance multimode fiber systems: a comprehensive approach,” Ph.D. thesis (Georgia Institute of Technology, 2008).

Randel, S.

Reed, W. A.

Saleh, B. E. A.

B. E. A. Saleh and R. M. Abdula, Fiber Integr. Opt. 5, 161 (1985).
[CrossRef]

Sales, S.

Tafur Monroy, I.

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

Tangdiongga, E.

Tatekura, K.

K. Tatekura, K. Itoh, and T. Matsumoto, IEEE Trans. Microwave Theory Tech. 26, 487 (1978).
[CrossRef]

van den Boom, H. P. A.

vd Boom, H. P. A.

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

Watanabe, Y.

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

White, W.

Yabre, G.

Yang, H.

Fiber Integr. Opt. (1)

B. E. A. Saleh and R. M. Abdula, Fiber Integr. Opt. 5, 161 (1985).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K. Tatekura, K. Itoh, and T. Matsumoto, IEEE Trans. Microwave Theory Tech. 26, 487 (1978).
[CrossRef]

J. Lightwave Technol. (7)

Opt. Express (1)

Opt. Fiber Technol. (1)

I. Tafur Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, Opt. Fiber Technol. 9, 159 (2003).
[CrossRef]

Other (2)

FTTH Handbook, available at http://www.ftthcouncil.eu (FTTH Council, 2010).

A. Polley, “High performance multimode fiber systems: a comprehensive approach,” Ph.D. thesis (Georgia Institute of Technology, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of the experimental setup for the PF GIPOF link frequency response measurement, up to 20 GHz .

Fig. 2
Fig. 2

Measured (solid curve) and theoretical (dashed curve) electrical responses for a 50 μm core diameter PF GIPOF link of lengths 25, 50, and 100 m .

Fig. 3
Fig. 3

Measured (solid curve) and theoretical (dashed curve) electrical responses for a 120 μm core diameter PF GIPOF link of lengths 25, 50, and 75 m .

Fig. 4
Fig. 4

Measured (solid curve) and theoretical (dashed curve) wavelength dependence of the electrical response of a 25 m long 62.5 μm core diameter PF GIPOF link.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H ( Ω ) = 1 + α C 2 · e 1 2 ( β o 2 Ω z σ c ) 2 · cos ( β o 2 Ω 2 z z + arctan ( α C ) ) · m = 1 M 2 m ( C m m χ m m + G m m ) e 2 α m z e j Ω τ m z .

Metrics