Abstract

General analytical expressions are derived for the average bit error rate of an intensity modulation and direct detection link using unbounded optical wavefront with on-off keying signalling technique propagating under all possible irradiance fluctuation conditions. These expressions include in a single equation the link performance of most of the proposed statistical models derived until now.

© 2011 Optical Society of America

Full Article  |  PDF Article

Errata

José María Garrido-Balsells, Antonio Jurado-Navas, José Francisco Paris, Miguel Castillo-Vázquez, and Antonio Puerta-Notario, "General analytical expressions for the bit error rate of atmospheric optical communication systems: erratum," Opt. Lett. 39, 5896-5896 (2014)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-39-20-5896

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
    [CrossRef]
  2. A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, in Numerical Simulations of Physical and Engineering Processes (Intech, 2011).
  3. L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Bellingham, 1998).
  4. Wolfram, http://functions.wolfram.com.
  5. T. A. Tsiftsis, IET Electron. Lett. 44, 373 (2008).
    [CrossRef]
  6. V. S. Adamchik and O. I. Marichev, in Proceedings of the International Conference on Symbolic and Algebraic Computation (ACM, 1990).
  7. C. A. Charalambides, Combinatorial Methods in Discrete Distributions (John Wiley & Sons, 2005).
    [CrossRef]
  8. P. Billingsley, Convergence of Probability Measures, 2nd ed. (John Wiley & Sons, 2005).
  9. L. Zheng and D. N. C. Tse, IEEE Trans. Inf. Theory 49, 1073(2003).
    [CrossRef]

2008 (1)

T. A. Tsiftsis, IET Electron. Lett. 44, 373 (2008).
[CrossRef]

2003 (1)

L. Zheng and D. N. C. Tse, IEEE Trans. Inf. Theory 49, 1073(2003).
[CrossRef]

Adamchik, V. S.

V. S. Adamchik and O. I. Marichev, in Proceedings of the International Conference on Symbolic and Algebraic Computation (ACM, 1990).

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
[CrossRef]

L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Bellingham, 1998).

Billingsley, P.

P. Billingsley, Convergence of Probability Measures, 2nd ed. (John Wiley & Sons, 2005).

Charalambides, C. A.

C. A. Charalambides, Combinatorial Methods in Discrete Distributions (John Wiley & Sons, 2005).
[CrossRef]

Garrido-Balsells, J. M.

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, in Numerical Simulations of Physical and Engineering Processes (Intech, 2011).

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
[CrossRef]

Jurado-Navas, A.

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, in Numerical Simulations of Physical and Engineering Processes (Intech, 2011).

Marichev, O. I.

V. S. Adamchik and O. I. Marichev, in Proceedings of the International Conference on Symbolic and Algebraic Computation (ACM, 1990).

Paris, J. F.

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, in Numerical Simulations of Physical and Engineering Processes (Intech, 2011).

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
[CrossRef]

Puerta-Notario, A.

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, in Numerical Simulations of Physical and Engineering Processes (Intech, 2011).

Tse, D. N. C.

L. Zheng and D. N. C. Tse, IEEE Trans. Inf. Theory 49, 1073(2003).
[CrossRef]

Tsiftsis, T. A.

T. A. Tsiftsis, IET Electron. Lett. 44, 373 (2008).
[CrossRef]

Zheng, L.

L. Zheng and D. N. C. Tse, IEEE Trans. Inf. Theory 49, 1073(2003).
[CrossRef]

IEEE Trans. Inf. Theory (1)

L. Zheng and D. N. C. Tse, IEEE Trans. Inf. Theory 49, 1073(2003).
[CrossRef]

IET Electron. Lett. (1)

T. A. Tsiftsis, IET Electron. Lett. 44, 373 (2008).
[CrossRef]

Other (7)

V. S. Adamchik and O. I. Marichev, in Proceedings of the International Conference on Symbolic and Algebraic Computation (ACM, 1990).

C. A. Charalambides, Combinatorial Methods in Discrete Distributions (John Wiley & Sons, 2005).
[CrossRef]

P. Billingsley, Convergence of Probability Measures, 2nd ed. (John Wiley & Sons, 2005).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
[CrossRef]

A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, and A. Puerta-Notario, in Numerical Simulations of Physical and Engineering Processes (Intech, 2011).

L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Bellingham, 1998).

Wolfram, http://functions.wolfram.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Proposed propagation scheme for a laser beam in a Málaga model to form the small-scale fluctuations. The observed field at the receiver consists of three terms: first, the line-of-sight (LOS) component, U L ; the second term is the coupled-to-LOS scattering term, U S C , whereas the third path represents the energy scattered to the receiver by off-axis eddies, U S G .

Fig. 2
Fig. 2

ABER against average optical SNR for different values of α, β, ρ. In all curves, the transmitted power is normalized, i.e., Ω + 2 b 0 = 1 . The cases of ρ = 0 and ρ = 1 correspond to the special cases of K and Gamma-Gamma (GG) distribution, respectively.

Fig. 3
Fig. 3

ABER against average optical SNR for different values of α, β, ρ. Different behaviors are shown for a same intensity of turbulence ( σ I 2 = 0.36 ). In all curves, the transmitted power is normalized, i.e., Ω + 2 b 0 = 1 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f I ( I ) = A k = 1 β a k I α + k 2 1 K α k ( 2 α β I γ β + Ω ) ,
{ A 2 α α 2 γ 1 + α 2 Γ ( α ) ( γ β γ β + Ω ) β + α 2 , a k ( β 1 k 1 ) ( γ β + Ω ) 1 k 2 ( k 1 ) ! ( Ω γ ) k 1 ( α β ) k 2 ;
f I ( I ) = A ( G ) k = 1 a k ( G ) I α + k 2 1 K α k ( 2 α I γ ) ,
{ A ( G ) 2 α α 2 γ 1 + α 2 Γ ( α ) ( γ β γ β + Ω ) β ; a k ( G ) ( β ) k 1 ( α γ ) k 2 [ ( k 1 ) ! ] 2 γ k 1 ( Ω + γ β ) k 1 .
P b ( e ) = 2 α 1 A 8 π π B α 2 k = 1 β 2 k B k 2 a k × G 5 , 2 2 , 4 ( 8 R 2 P t 2 σ N 2 B 2 | 1 α 2 , 2 α 2 , 1 k 2 , 2 k 2 , 1 0 , 1 2 ) ,
P b ( e ) = 2 α 1 A ( G ) 8 π π ( γ α ) α 2 k = 1 2 k ( γ α ) k 2 a k ( G ) × G 5 , 2 2 , 4 ( 8 R 2 P t 2 σ N 2 γ 2 α 2 | 1 α 2 , 2 α 2 , 1 k 2 , 2 k 2 , 1 0 , 1 2 ) .
σ I min 2 = 4 b 0 2 ( 1 ρ ) 2 + 4 Ω b 0 ( 1 ρ ) + 8 ρ b 0 2 ( 1 ρ ) .

Metrics