Abstract

Conventional optical modes are supported by the total internal reflection occurring due to refractive index difference. Surface modes guided through an interface seem to have a different origin from them because they are supported by the difference in the signs of constitutive parameters of two media comprising the interface. Here, we propose that these surface modes have their origin in the accumulated polarization charges (or magnetization currents) near the interface. To induce such an accumulation, we need to make the normal component of the electric field (or the tangential component of magnetic flux density) on each side of the interface mutually antiphase, which entails different signs of constitutive parameters across the interface.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Boardman, N. King, and L. Velasco, Electromagnetics 25, 365 (2005).
    [CrossRef]
  2. S. A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005).
    [CrossRef]
  3. B. E. Sernelius, Surface Modes in Physics (Wiley-VCH, 2001). This potential is very similar in its form to the bound-state wave function of electrons in the presence of a δ-function potential.
    [CrossRef]
  4. Here we can use E=−∇ϕ−(1/c)∂A/∂t≈−∇ϕ if ω/c≪β, where A and c are the vector potential and the speed of light in vacuum, respectively.
  5. S.I.Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).
  6. K.-Y. Kim, J. Jung, and J. Kim, IEEE Photon. Technol. Lett. 22, 1382 (2010).
    [CrossRef]
  7. B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
    [CrossRef]

2010 (1)

K.-Y. Kim, J. Jung, and J. Kim, IEEE Photon. Technol. Lett. 22, 1382 (2010).
[CrossRef]

2005 (2)

A. D. Boardman, N. King, and L. Velasco, Electromagnetics 25, 365 (2005).
[CrossRef]

S. A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005).
[CrossRef]

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Boardman, A. D.

A. D. Boardman, N. King, and L. Velasco, Electromagnetics 25, 365 (2005).
[CrossRef]

Jung, J.

K.-Y. Kim, J. Jung, and J. Kim, IEEE Photon. Technol. Lett. 22, 1382 (2010).
[CrossRef]

Kim, J.

K.-Y. Kim, J. Jung, and J. Kim, IEEE Photon. Technol. Lett. 22, 1382 (2010).
[CrossRef]

Kim, K.-Y.

K.-Y. Kim, J. Jung, and J. Kim, IEEE Photon. Technol. Lett. 22, 1382 (2010).
[CrossRef]

King, N.

A. D. Boardman, N. King, and L. Velasco, Electromagnetics 25, 365 (2005).
[CrossRef]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005).
[CrossRef]

Sernelius, B. E.

B. E. Sernelius, Surface Modes in Physics (Wiley-VCH, 2001). This potential is very similar in its form to the bound-state wave function of electrons in the presence of a δ-function potential.
[CrossRef]

Velasco, L.

A. D. Boardman, N. King, and L. Velasco, Electromagnetics 25, 365 (2005).
[CrossRef]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Electromagnetics (1)

A. D. Boardman, N. King, and L. Velasco, Electromagnetics 25, 365 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K.-Y. Kim, J. Jung, and J. Kim, IEEE Photon. Technol. Lett. 22, 1382 (2010).
[CrossRef]

Phys. Rev. B (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005).
[CrossRef]

Other (3)

B. E. Sernelius, Surface Modes in Physics (Wiley-VCH, 2001). This potential is very similar in its form to the bound-state wave function of electrons in the presence of a δ-function potential.
[CrossRef]

Here we can use E=−∇ϕ−(1/c)∂A/∂t≈−∇ϕ if ω/c≪β, where A and c are the vector potential and the speed of light in vacuum, respectively.

S.I.Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Directions of (a) electric field E, polarization vector P, and electric displacement D in an ε-negative medium and (b) magnetic field H, magnetization vector M, induced current density J, and magnetic flux density B in a μ-negative medium.

Fig. 2
Fig. 2

Field configurations due to a perturbation field D = D x ^ normally incident to (a) dielectric/dielectric and (b) dielectric/ε-negative interfaces.

Fig. 3
Fig. 3

Field configurations due to a perturbation field H = H z ^ tangentially incident to (a) dielectric/ dielectric and (b) dielectric/μ-negative interfaces.

Fig. 4
Fig. 4

Induced polarization charges in slab structures: d, dielectric; ε, ε-negative medium.

Fig. 5
Fig. 5

Induced magnetization currents in slab structures: d, dielectric; μ, μ-negative medium.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P = ε 0 N q 2 / m * ε 0 ( ω 2 ω 0 2 ) + j ω γ E ,
ϕ = q 2 ε 0 ε ˜ exp ( β | x | ) β exp [ j ( β z ω t ) ] ,

Metrics