Abstract

We describe a tunable broadband mid-IR laser source based on difference-frequency mixing of a 100MHz femto second Yb:fiber laser oscillator and a Raman-shifted soliton generated with the same laser. The resulting light is tunable over 3.0μm to 4.4μm, with a FWHM bandwidth of 170nm and maximum average output power up to 125mW. The noise and coherence properties of this source are also investigated and described.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Adler, P. Masłowski, A. Foltynowicz, K. Cossel, T. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
    [CrossRef] [PubMed]
  2. K. Vodopyanov, E. Sorokin, I. Sorokina, and P. Schunemann, Opt. Lett. 36, 2275 (2011).
    [CrossRef] [PubMed]
  3. A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
    [CrossRef] [PubMed]
  4. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, Opt. Lett. 32, 1138 (2007).
    [CrossRef] [PubMed]
  5. P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, New J. Phys. 8, 262 (2006).
    [CrossRef]
  6. D. Winters, P. Schlup, and R. Bartels, Opt. Lett. 35, 2179(2010).
    [CrossRef] [PubMed]
  7. A. Gambetta, R. Ramponi, and M. Marangoni, Opt. Lett. 33, 2671 (2008).
    [CrossRef] [PubMed]
  8. F. Adler, K. Cossel, M. Thorpe, I. Hartl, M. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
    [CrossRef] [PubMed]
  9. F. Mitschke and L. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]
  10. L. Nugent-Glandorf, T. Johnson, Y. Kobayashi, and S. Diddams, Opt. Lett. 36, 1578 (2011).
    [CrossRef] [PubMed]
  11. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, Opt. Express 16, 7055 (2008).
    [CrossRef] [PubMed]
  12. F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  13. J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135(2006).
    [CrossRef]
  14. T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B , arXiv:1108.0943v1 (to be published).
  15. A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

2011 (2)

2010 (2)

2009 (1)

2008 (2)

2007 (1)

2006 (2)

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, New J. Phys. 8, 262 (2006).
[CrossRef]

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135(2006).
[CrossRef]

2004 (1)

F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2002 (1)

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

1986 (1)

Adler, F.

Baltuška, A.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Bartels, R.

Biegert, J.

Briles, T.

Buckley, J.

F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Clark, W.

F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Coen, S.

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135(2006).
[CrossRef]

Cossel, K.

Diddams, S.

L. Nugent-Glandorf, T. Johnson, Y. Kobayashi, and S. Diddams, Opt. Lett. 36, 1578 (2011).
[CrossRef] [PubMed]

T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B , arXiv:1108.0943v1 (to be published).

Dudley, J.

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135(2006).
[CrossRef]

A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

Erny, C.

Fermann, M.

F. Adler, K. Cossel, M. Thorpe, I. Hartl, M. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
[CrossRef] [PubMed]

A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

Foltynowicz, A.

Fuji, T.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Gagliardi, G.

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, New J. Phys. 8, 262 (2006).
[CrossRef]

Gambetta, A.

Genty, G.

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135(2006).
[CrossRef]

Hartl, I.

Ilday, F.

F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Johnson, T.

L. Nugent-Glandorf, T. Johnson, Y. Kobayashi, and S. Diddams, Opt. Lett. 36, 1578 (2011).
[CrossRef] [PubMed]

T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B , arXiv:1108.0943v1 (to be published).

Keller, U.

Kobayashi, T.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Kobayashi, Y.

Kühlke, D.

Leitenstorfer, A.

Ling, D.

A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

Maddaloni, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, New J. Phys. 8, 262 (2006).
[CrossRef]

Malara, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, New J. Phys. 8, 262 (2006).
[CrossRef]

Marangoni, M.

Martin, M.

A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

Maslowski, P.

McKay, H.

A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

Mitschke, F.

Mollenauer, L.

Moutzouris, K.

Natale, P. D.

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, New J. Phys. 8, 262 (2006).
[CrossRef]

Nugent-Glandorf, L.

Ramponi, R.

Ruehl, A.

A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

Schlup, P.

Schunemann, P.

Sorokin, E.

Sorokina, I.

Thomas, B.

A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

Thorpe, M.

Torizuka, K.

Vodopyanov, K.

Winters, D.

Wise, F.

F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ye, J.

Yoshitomi, D.

Zhou, X.

Appl. Phys. B (1)

T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B , arXiv:1108.0943v1 (to be published).

New J. Phys. (1)

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, New J. Phys. 8, 262 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. Lett. (2)

F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135(2006).
[CrossRef]

Other (1)

A. Ruehl, K. Cossel, M. Martin, H. McKay, B. Thomas, D. Ling, M. Fermann, J. Dudley, I. Hartl, and J. Ye, arXiv:1105.2093v1 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. PBS: polarizing beam splitting cube. PCF: photonic crystal fiber. DBS: dichroic beam splitter. PPLN: fan-out periodically-poled lithium niobate. Ge DBS: antireflection coated germanium filter.

Fig. 2
Fig. 2

(a) Soliton shift as a function of launch power into the PCF, with each spectrum individually normalized. (b) MIR idler spectra and conversion efficiency relative to pump photons. The total average power is also noted above each spectrum. The absorption feature at 4.4 μm is due to air-path absorption of CO 2 before the monochromator. Inset: average idler power as function of pump power at the 3.2 μm tuning point.

Fig. 3
Fig. 3

(a) Relative intensity noise (RIN) for the MIR tuning point of 3.196 μm . Measurement of the MIR RIN is limited to 10 MHz due to photodiode bandwidth. (b) Integrated RIN ( 10 Hz 10 MHz ).

Fig. 4
Fig. 4

Coherence properties of the system. (a) Free-running beat note between the 1.36 μm soliton and CW laser with the max-hold function enabled over several seconds of measurement; the spread in beat-note frequency is due to variation in the unlocked repetition rate of the Yb:fiber oscillator. (b) Beat note signal-to-noise ratio across the soliton tuning range. (c) MIR beat notes.

Metrics