Abstract

We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Conibeer, Mater. Today 10, 42 (2007).
    [CrossRef]
  2. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
    [CrossRef] [PubMed]
  3. A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
    [CrossRef]
  4. F. Auzel, Chem. Rev. 104, 139 (2004).
    [CrossRef] [PubMed]
  5. T. Kano, in Phosphor Handbook, W.M.Yen, S.Shionoya, and H.Yamamoto, eds. (CRC Press, 2006), pp. 191–211.
  6. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
    [CrossRef]
  7. B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009).
    [CrossRef] [PubMed]
  8. P. Yeh, A. Yariv, and C.-S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
    [CrossRef]
  9. H. A. López and P. M. Fauchet, Proc. SPIE 3942, 87 (2000).
    [CrossRef]
  10. H. A. Abu-Safia, A. I. Al-Sharif, and I. O. A. Aljarayesh, Appl. Opt. 32, 4831 (1993).
    [CrossRef] [PubMed]
  11. C. M. de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, Opt. Express 17, 17338 (2009).
    [CrossRef]

2011

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
[CrossRef] [PubMed]

2009

2007

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

G. Conibeer, Mater. Today 10, 42 (2007).
[CrossRef]

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

2004

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef] [PubMed]

2000

H. A. López and P. M. Fauchet, Proc. SPIE 3942, 87 (2000).
[CrossRef]

1993

1977

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009).
[CrossRef] [PubMed]

Abu-Safia, H. A.

Aljarayesh, I. O. A.

Al-Sharif, A. I.

Arkhipov, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

Auzel, F.

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef] [PubMed]

Batentschuk, M.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
[CrossRef] [PubMed]

Beaucarne, G.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

Botten, L. C.

Brabec, C. J.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
[CrossRef] [PubMed]

Conibeer, G.

G. Conibeer, Mater. Today 10, 42 (2007).
[CrossRef]

de Sterke, C. M.

Del Cañizo, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

Dossou, K. B.

Fauchet, P. M.

H. A. López and P. M. Fauchet, Proc. SPIE 3942, 87 (2000).
[CrossRef]

Green, M. A.

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

Hong, C.-S.

Kano, T.

T. Kano, in Phosphor Handbook, W.M.Yen, S.Shionoya, and H.Yamamoto, eds. (CRC Press, 2006), pp. 191–211.

López, H. A.

H. A. López and P. M. Fauchet, Proc. SPIE 3942, 87 (2000).
[CrossRef]

McCann, M.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

McPhedran, R. C.

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009).
[CrossRef] [PubMed]

Osvet, A.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
[CrossRef] [PubMed]

Pinna, L.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
[CrossRef] [PubMed]

Richards, B. S.

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

Shalav, A.

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

Slaoui, A.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

Strümpel, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

Švrcek, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

Tobias, I.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009).
[CrossRef] [PubMed]

Wang, H.-Q.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
[CrossRef] [PubMed]

White, T. P.

Yariv, A.

Yeh, P.

Adv. Mater.

H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Chem. Rev.

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Mater. Today

G. Conibeer, Mater. Today 10, 42 (2007).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009).
[CrossRef] [PubMed]

Proc. SPIE

H. A. López and P. M. Fauchet, Proc. SPIE 3942, 87 (2000).
[CrossRef]

Sol. Energy Mater. Sol. Cells

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
[CrossRef]

A. Shalav, B. S. Richards, and M. A. Green, Sol. Energy Mater. Sol. Cells 91, 829 (2007).
[CrossRef]

Other

T. Kano, in Phosphor Handbook, W.M.Yen, S.Shionoya, and H.Yamamoto, eds. (CRC Press, 2006), pp. 191–211.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dispersion of an ideal DBR, shown for the first Brillouin zone, where the horizontal axis corresponds to the normalized wave vector (for a periodicity L) and the vertical axis corresponds to the normalized frequency.

Fig. 2
Fig. 2

Calculated reflectance spectra for porous Si DBRs with 10 through 40 high-/low-index bilayers, with Er I 13 / 2 4 I 15 / 2 4 spectrum shown for reference.

Fig. 3
Fig. 3

Calculated field profiles for DBRs with 10–40 high-/low-index bilayers at an incident angle of 25 ° . The horizontal axis of each plot shows vacuum wavelength (nano meters), and the vertical axis shows depth into the PC (nano meters). The graded color bar across the top of each subfigure indicates the spatially resolved EM field intensity E 0 2 normalized to the incident field (note the scale is different for each sub figure). The black horizontal line shows the air/PC interface at 0 nm depth, and the red line shows the PC/substrate interface.

Metrics