Abstract

We analyze fiber systems where the linear losses act as a strong perturbation, causing a frequency drift of the modulational instability sidebands. We achieve the total suppression of this frequency drift by means of a technique based on the concept of a photon reservoir, which feeds in situ the process of modulational instability by continually supplying it the amount of photons absorbed by the fiber.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics,4th ed. (Academic, 2008).
  2. A. Hasegawa, Opt. Lett. 9, 288 (1984).
    [CrossRef] [PubMed]
  3. A. Labruyere, S. Ambomo, C. M. Ngabireng, P. Tchofo Dinda, K. Nakkeeran, and K. Porsezian, Opt. Lett. 32, 1287 (2007).
    [CrossRef] [PubMed]
  4. Y. F. Chen, K. Beckwitt, F. K. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, J. Opt. Soc. Am. B 23, 347 (2006).
    [CrossRef]
  5. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, Opt. Express 18, 4547 (2010).
    [CrossRef] [PubMed]
  6. C. Chaudhari, T. Suzuki, and Y. Ohishi, J. Lightwave Technol. 27, 2095 (2009).
    [CrossRef]
  7. P. Tchofo Dinda and K. Porsezian, J. Opt. Soc. Am. B 27, 1143 (2010).
    [CrossRef]
  8. S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, Phys. Rev. A 43, 6162 (1991).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

2007 (1)

2006 (1)

1991 (1)

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, Phys. Rev. A 43, 6162 (1991).
[CrossRef] [PubMed]

1984 (1)

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics,4th ed. (Academic, 2008).

Aitken, B. G.

Ambomo, S.

Beckwitt, K.

Brilland, L.

Cavalcanti, S. B.

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, Phys. Rev. A 43, 6162 (1991).
[CrossRef] [PubMed]

Chaudhari, C.

Chen, Y. F.

Cressoni, J. C.

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, Phys. Rev. A 43, 6162 (1991).
[CrossRef] [PubMed]

da Cruz, H. R.

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, Phys. Rev. A 43, 6162 (1991).
[CrossRef] [PubMed]

Dinda, P. Tchofo

El-Amraoui, M.

Fatome, J.

Fortier, C.

Gadret, G.

Gouveia-Neto, A. S.

S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, Phys. Rev. A 43, 6162 (1991).
[CrossRef] [PubMed]

Hasegawa, A.

Jules, J. C.

Kibler, B.

Labruyere, A.

Messaddeq, Y.

Nakkeeran, K.

Ngabireng, C. M

Ohishi, Y.

Polacchini, C. F.

Porsezian, K.

Renversez, G.

Sanghera, J. S.

Skripatchev, I.

Smektala, F.

Suzuki, T.

Szpulak, M.

Troles, J.

Wise, F. K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic representation of the MI map in the fiber system for β 2 < 0 and β 4 > 0 .

Fig. 2
Fig. 2

Accumulated MI gain for L = 6 m , and OMF Ω opt versus distance z.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 2 A t t + β 3 6 A t t t + i β 4 24 A t t t t + i γ ¯ | A | 2 A 1 + Γ | A | 2 α A 2 ,
q z = i β 2 2 q t t + β 3 6 q t t t + i β 4 24 q t t t t + i γ ¯ exp ( α z ) | q | 2 q 1 + Γ | q | 2 .
G = ± 2 γ i 2 P 2 Q 2 ( β 2 2 Ω 2 + β 4 24 Ω 4 + γ r P Q ) 2 + ( γ r P Q ) 2 + 2 γ i P ( Q 1 + Q 1 / 2 ) .
G | β 2 | Ω 2 | Q 2 | Ω c 2 exp ( α z ) / ( Q 2 Ω 2 ) 1 .
G ˜ = α L + κ [ W ( Ω , 0 ) tan 1 ( W ( Ω , 0 ) ) ] , for L > z c ,
G ˜ = α L + κ [ η 1 + tan 1 ( η 1 / η 2 ) ] , for L < z c ,
Ω 1 , 2 = Ω 0 [ 1 ± 1 P 0 / P 0 c L ] 1 / 2 , for L < z c ,
Ω 1 , 2 = Ω 0 [ 1 ± 1 P 0 / P 0 c ] 1 / 2 , for L z c ,
P 0 = P c 1 ( β 2 , β 4 ) × exp ( α L ) .

Metrics