Abstract

Waveguiding structures are one of the fundamental components of integrated photonic circuitry. Devices with low loss and a linear response across a wide wavelength range are especially desirable. In the present Letter, we have successfully developed and characterized low-loss silica waveguides integrated on a silicon substrate with a novel suspended cylinder geometry. The unique design creates a device that is effectively air clad, resulting in a large refractive index contrast for improved optical field confinement. The measured loss is constant from 658 to 1550nm, and it is independent of the polarization of the input light and the input power.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
    [CrossRef]
  2. C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
    [CrossRef]
  3. P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, Sens. Actuators B 155, 446 (2011).
    [CrossRef]
  4. T. Miya, IEEE J. Sel. Top. Quantum Electron. 6, 38 (2000).
    [CrossRef]
  5. X. Zhang and A. M. Armani, Opt. Lett. 36, 3012 (2011).
    [CrossRef] [PubMed]
  6. R. Adar, M. R. Serbin, and V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
    [CrossRef]
  7. J. F. Bauters, M. J. R. Heck, D. John, D. X. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, Opt. Express 19, 3163 (2011).
    [CrossRef] [PubMed]
  8. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
    [CrossRef]
  9. H. Ma, A. K. Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
    [CrossRef]
  10. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
    [CrossRef] [PubMed]
  11. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
    [CrossRef]
  12. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).
    [CrossRef]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, Opt. Lett. 21, 1966 (1996).
    [CrossRef] [PubMed]
  14. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
    [CrossRef] [PubMed]

2011 (4)

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, Sens. Actuators B 155, 446 (2011).
[CrossRef]

X. Zhang and A. M. Armani, Opt. Lett. 36, 3012 (2011).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. X. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, Opt. Express 19, 3163 (2011).
[CrossRef] [PubMed]

2010 (1)

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

2008 (1)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

2002 (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[CrossRef]

2000 (4)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef] [PubMed]

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

T. Miya, IEEE J. Sel. Top. Quantum Electron. 6, 38 (2000).
[CrossRef]

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

1996 (1)

1994 (1)

R. Adar, M. R. Serbin, and V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[CrossRef]

1965 (1)

Adar, R.

R. Adar, M. R. Serbin, and V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[CrossRef]

Agarwal, A.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Armani, A. M.

Barton, J. S.

Bauters, J. F.

Ben Bakir, B.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Bernabe, S.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Beyeler, R.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

Blumenthal, D. J.

Bona, G. L.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

Boskovic, A.

Bowers, J. E.

Chernikov, S. V.

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef] [PubMed]

Cottier, K.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, Sens. Actuators B 155, 446 (2011).
[CrossRef]

Dai, D. X.

Dalton, L. R.

H. Ma, A. K. Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[CrossRef]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Fedeli, J. M.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Foresi, J.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Germann, R.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

Gruner-Nielsen, L.

Hamori, A.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, Sens. Actuators B 155, 446 (2011).
[CrossRef]

Heck, M. J. R.

Heideman, R. G.

Horst, F.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

Horvath, R.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, Sens. Actuators B 155, 446 (2011).
[CrossRef]

Hunt, H. K.

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

Jen, A. K. Y.

H. Ma, A. K. Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[CrossRef]

John, D.

Kimerling, L. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Kopp, C.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Kozma, P.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, Sens. Actuators B 155, 446 (2011).
[CrossRef]

Kurunczi, S.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, Sens. Actuators B 155, 446 (2011).
[CrossRef]

Lee, K. K.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Leinse, A.

Levring, O. A.

Lim, D. R.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Luan, H. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Ma, H.

H. Ma, A. K. Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[CrossRef]

Malitson, I. H.

Massarek, I.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

Miya, T.

T. Miya, IEEE J. Sel. Top. Quantum Electron. 6, 38 (2000).
[CrossRef]

Mizrahi, V.

R. Adar, M. R. Serbin, and V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[CrossRef]

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Moss, D. J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef] [PubMed]

Offrein, B. J.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

Orobtchouk, R.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Porte, H.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Salemink, H. W. M.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

Schrank, F.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Serbin, M. R.

R. Adar, M. R. Serbin, and V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[CrossRef]

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Taylor, J. R.

Tekin, T.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Tien, M. C.

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef] [PubMed]

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Zhang, X.

Zimmermann, L.

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

Adv. Mater. (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, Adv. Mater. 14, 1339 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 498(2011).
[CrossRef]

T. Miya, IEEE J. Sel. Top. Quantum Electron. 6, 38 (2000).
[CrossRef]

J. Electrochem. Soc. (1)

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000).
[CrossRef]

J. Lightwave Technol. (1)

R. Adar, M. R. Serbin, and V. Mizrahi, J. Lightwave Technol. 12, 1369 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Nanoscale (1)

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

Nat. Photon. (1)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nat. Photon. 2, 737 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Science (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef] [PubMed]

Sens. Actuators B (1)

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, Sens. Actuators B 155, 446 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Integrated silica-on-silicon waveguide. (a) The silica is lithographically defined and etched using buffered oxide etchant. Subsequently, it is undercut using XeF 2 , an isotropic gas-phase etchant. (b) The silica is reflowed using a CO 2 laser, forming the suspended waveguide device. (c)–(d) Scanning electron microscope images of the integrated silica-on-silicon waveguide device, highlighting both the isolation from the silicon substrate and the cylindrical nature of the waveguides.

Fig. 2
Fig. 2

Finite element method simulations of the optical field in the waveguide and the membrane at (a) 658 and (b)  1550 nm . The optical field intensity is evaluated in the horizontal and vertical directions, as indicated in part (a). The field intensity distribution at (c) 658 and (d)  1550 nm is shown. The presence of the membrane does not significantly distort the Gaussian profile of the optical field.

Fig. 3
Fig. 3

Propagation loss for 658, 980, and 1550 nm wavelengths, as measured from waveguides of different lengths. The loss increases linearly with length. From the slope of these lines, the loss is determined to be [ 0.97 , 0.82 , 0.73 ] dB / cm at [ 658 , 980 , 1550 ] nm .

Fig. 4
Fig. 4

Polarization and power behavior. (a) The output power is independent of the polarization of the input power. (b) The output power changes linearly with the input power. Therefore, the waveguide does not demonstrate any power-dependent nonlinear behavior, and the transmission loss is polarization independent.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Loss ( dB m ) = 10 log ( P o P i ) ,

Metrics