Abstract

We demonstrate a method for maintaining the maximum signal-to-noise ratio (SNR) of the signal obtained from the self-mixing sensor based on a vertical-cavity surface-emitting laser (VCSEL). It was found that the locus of the maximum SNR in the current-temperature space can be well approximated by a simple analytical model related to the temperature behavior of the VCSEL threshold current. The optimum sensor performance is achieved by tuning the laser current according to the proposed model, thus enabling the sensor to operate without temperature stabilization in a wide temperature range between 20°C and +80°C.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Tucker, A. D. Rakic, C. J. O’Brien, and A. V. Zvyagin, Appl. Opt. 46, 611 (2007).
    [CrossRef]
  2. Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakic, Opt. Express 18, 11720 (2010).
    [CrossRef] [PubMed]
  3. T. Bosch, C. Bes, L. Scalise, and G. Plantier, in Encyclopedia of Sensors, Vol.  X, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, 2006), p. 1.
  4. S. Donati, L. Falzoni, and S. Merlo, IEEE Trans. Instrum. Meas. 45, 942 (1996).
    [CrossRef]
  5. L. Scalise, W. Steenbergen, and F. de Mul, Appl. Opt. 40, 4608 (2001).
    [CrossRef]
  6. J. Piprek, H. Wenzel, and G. Sztefka, IEEE Photon. Technol. Lett. 6, 139 (1994).
    [CrossRef]
  7. P. Mena, J. Morikuni, S.-M. Kang, A. Harton, and K. Wyatt, J. Lightwave Technol. 17, 865 (1999).
    [CrossRef]
  8. J. J. Dudley, D. L. Crawford, and J. E. Bowers, IEEE Photon. Technol. Lett. 4, 311 (1992).
    [CrossRef]
  9. D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
    [CrossRef]
  10. C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
    [CrossRef]
  11. K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995).
    [CrossRef]
  12. Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, IEEE J. Quantum Electron. 17, 1216 (1981).
    [CrossRef]
  13. G. Taylor and Q. Yang, IEEE J. Quantum Electron. 32, 1441 (1996).
    [CrossRef]
  14. R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, Opt. Lett. 35, 814 (2010).
    [CrossRef] [PubMed]
  15. K. B. Rochford and A. H. Rose, Opt. Lett. 20, 2105 (1995).
    [CrossRef] [PubMed]

2010 (2)

2007 (1)

2006 (1)

C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

2001 (1)

1999 (1)

1996 (2)

S. Donati, L. Falzoni, and S. Merlo, IEEE Trans. Instrum. Meas. 45, 942 (1996).
[CrossRef]

G. Taylor and Q. Yang, IEEE J. Quantum Electron. 32, 1441 (1996).
[CrossRef]

1995 (2)

K. B. Rochford and A. H. Rose, Opt. Lett. 20, 2105 (1995).
[CrossRef] [PubMed]

K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995).
[CrossRef]

1994 (1)

J. Piprek, H. Wenzel, and G. Sztefka, IEEE Photon. Technol. Lett. 6, 139 (1994).
[CrossRef]

1993 (1)

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

1992 (1)

J. J. Dudley, D. L. Crawford, and J. E. Bowers, IEEE Photon. Technol. Lett. 4, 311 (1992).
[CrossRef]

1981 (1)

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, IEEE J. Quantum Electron. 17, 1216 (1981).
[CrossRef]

Allerman, A.

C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Bertling, K.

Bes, C.

T. Bosch, C. Bes, L. Scalise, and G. Plantier, in Encyclopedia of Sensors, Vol.  X, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, 2006), p. 1.

Bosch, T.

R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, Opt. Lett. 35, 814 (2010).
[CrossRef] [PubMed]

T. Bosch, C. Bes, L. Scalise, and G. Plantier, in Encyclopedia of Sensors, Vol.  X, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, 2006), p. 1.

Bowers, J. E.

J. J. Dudley, D. L. Crawford, and J. E. Bowers, IEEE Photon. Technol. Lett. 4, 311 (1992).
[CrossRef]

Chen, C.

C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Choquette, K.

C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Coldren, L.

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

Corzine, S.

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

Crawford, D. L.

J. J. Dudley, D. L. Crawford, and J. E. Bowers, IEEE Photon. Technol. Lett. 4, 311 (1992).
[CrossRef]

de Mul, F.

Donati, S.

S. Donati, L. Falzoni, and S. Merlo, IEEE Trans. Instrum. Meas. 45, 942 (1996).
[CrossRef]

Dudley, J. J.

J. J. Dudley, D. L. Crawford, and J. E. Bowers, IEEE Photon. Technol. Lett. 4, 311 (1992).
[CrossRef]

Falzoni, L.

S. Donati, L. Falzoni, and S. Merlo, IEEE Trans. Instrum. Meas. 45, 942 (1996).
[CrossRef]

Geib, K.

C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Harton, A.

Jacobs, P. A.

Kang, S.-M.

Kliese, R.

Leisher, P.

C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Lim, Y. L.

Majewski, M.

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

Mena, P.

Merlo, S.

S. Donati, L. Falzoni, and S. Merlo, IEEE Trans. Instrum. Meas. 45, 942 (1996).
[CrossRef]

Mitsuhashi, Y.

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, IEEE J. Quantum Electron. 17, 1216 (1981).
[CrossRef]

Mitsutsuka, S.

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, IEEE J. Quantum Electron. 17, 1216 (1981).
[CrossRef]

Morikuni, J.

O’Brien, C. J.

Petermann, K.

K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995).
[CrossRef]

Peters, F.

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

Peters, M.

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

Piprek, J.

J. Piprek, H. Wenzel, and G. Sztefka, IEEE Photon. Technol. Lett. 6, 139 (1994).
[CrossRef]

Plantier, G.

T. Bosch, C. Bes, L. Scalise, and G. Plantier, in Encyclopedia of Sensors, Vol.  X, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, 2006), p. 1.

Rakic, A. D.

Rochford, K. B.

Rose, A. H.

Scalise, L.

L. Scalise, W. Steenbergen, and F. de Mul, Appl. Opt. 40, 4608 (2001).
[CrossRef]

T. Bosch, C. Bes, L. Scalise, and G. Plantier, in Encyclopedia of Sensors, Vol.  X, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, 2006), p. 1.

Scott, J.

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

Shimada, J.

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, IEEE J. Quantum Electron. 17, 1216 (1981).
[CrossRef]

Steenbergen, W.

Sztefka, G.

J. Piprek, H. Wenzel, and G. Sztefka, IEEE Photon. Technol. Lett. 6, 139 (1994).
[CrossRef]

Tanimizu, K.

Taylor, G.

G. Taylor and Q. Yang, IEEE J. Quantum Electron. 32, 1441 (1996).
[CrossRef]

Thibeault, B.

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

Tucker, J. R.

Wenzel, H.

J. Piprek, H. Wenzel, and G. Sztefka, IEEE Photon. Technol. Lett. 6, 139 (1994).
[CrossRef]

Wyatt, K.

Yang, Q.

G. Taylor and Q. Yang, IEEE J. Quantum Electron. 32, 1441 (1996).
[CrossRef]

Young, D.

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

Zvyagin, A. V.

Appl. Opt. (2)

IEEE J. Quantum Electron. (4)

D. Young, J. Scott, F. Peters, M. Peters, M. Majewski, B. Thibeault, S. Corzine, and L. Coldren, IEEE J. Quantum Electron. 29, 2013 (1993).
[CrossRef]

C. Chen, P. Leisher, A. Allerman, K. Geib, and K. Choquette, IEEE J. Quantum Electron. 42, 1078 (2006).
[CrossRef]

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, IEEE J. Quantum Electron. 17, 1216 (1981).
[CrossRef]

G. Taylor and Q. Yang, IEEE J. Quantum Electron. 32, 1441 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Piprek, H. Wenzel, and G. Sztefka, IEEE Photon. Technol. Lett. 6, 139 (1994).
[CrossRef]

J. J. Dudley, D. L. Crawford, and J. E. Bowers, IEEE Photon. Technol. Lett. 4, 311 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. Donati, L. Falzoni, and S. Merlo, IEEE Trans. Instrum. Meas. 45, 942 (1996).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Other (1)

T. Bosch, C. Bes, L. Scalise, and G. Plantier, in Encyclopedia of Sensors, Vol.  X, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, 2006), p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the SM experiments.

Fig. 2
Fig. 2

Sample SM Doppler spectrum overlaid with a fit function consisting of a Gaussian plus a constant value used to estimate the SNR.

Fig. 3
Fig. 3

Light-current curves for the device at various temperatures showing the variation in threshold current with temperature.

Fig. 4
Fig. 4

SNR of the SM Doppler signal as a function of temperature and current. The red solid (lowest) curve represents the temperature dependence of the threshold current, and the black solid (highest) curve is a locus of the maximum SNR for the VCSEL operating in a single-mode regime.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I th = α + β ( T T min ) 2 ,
I SNR = α SNR + β SNR ( T T SNR ) 2 ,

Metrics