Abstract

We theoretically studied a nonlinear optical process in a hybrid plasmonic waveguide composed of a nonlinear dielectric waveguide and a metal film with a separation of a thin air gap. Owing to the hybridization effect of guided mode and surface plasmon polariton mode, this particular waveguide is able to confine the optical-field in a deep subwavelength scale together with low propagation loss. Based on this, efficient second-harmonic generations (SHG) were revealed at the fundamental wavelength of λ=1.55μm with good field confinement. The SHG efficiency, as well as the coupling coefficient and mode area, were analyzed and discussed in detail with respect to the structural parameters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, Opt. Lett. 34, 310(2009).
    [CrossRef] [PubMed]
  2. M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, Opt. Express 18, 21030 (2010).
    [CrossRef] [PubMed]
  3. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, Opt. Express 17, 2968 (2009).
    [CrossRef] [PubMed]
  4. Y. L. Lee, B. -A. Yu, T. J. Eom, W. Shin, C. Jung, Y. -C. Noh, J. Lee, and D. -K. Ko, Opt. Express 14, 2776 (2006).
    [CrossRef] [PubMed]
  5. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
    [CrossRef]
  6. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, Opt. Express 17, 20063 (2009).
    [CrossRef] [PubMed]
  7. F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, Opt. Express 19, 2858 (2011).
    [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, Opt. Express 14, 9467 (2006).
    [CrossRef] [PubMed]
  9. T. Holmgaard and S. I. Bozhevolnyi, Phys. Rev. B 75, 245405 (2007).
    [CrossRef]
  10. R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, Nat. Photonics 2, 496 (2008).
    [CrossRef]
  11. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
    [CrossRef] [PubMed]
  12. Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
    [CrossRef] [PubMed]
  13. L. Zhu, IEEE Photon. Technol. Lett. 22, 535 (2010).
    [CrossRef]
  14. G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]

2011

2010

M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, Opt. Express 18, 21030 (2010).
[CrossRef] [PubMed]

L. Zhu, IEEE Photon. Technol. Lett. 22, 535 (2010).
[CrossRef]

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
[CrossRef]

2009

2008

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

2007

T. Holmgaard and S. I. Bozhevolnyi, Phys. Rev. B 75, 245405 (2007).
[CrossRef]

2006

1999

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
[CrossRef] [PubMed]

1984

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Chen, Y. F.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
[CrossRef] [PubMed]

Chen, Z.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Davoyan, A. R.

Dereux, A.

Edwards, G. J.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Eom, T. J.

Feng, Y. J.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Holmgaard, T.

Hu, C.

Hu, W.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
[CrossRef]

Hu, X. K.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
[CrossRef]

Jung, C.

Kivshar, Y. S.

Ko, D. -K.

Krasavin, A. V.

Lawrence, M.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Lee, J.

Lee, Y. L.

Li, L.

Li, T.

Lu, F. F.

Lu, Y. Q.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
[CrossRef]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
[CrossRef] [PubMed]

Luo, X.

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Markey, L.

Ming, N. B.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
[CrossRef] [PubMed]

Noh, Y. -C.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Pu, M.

Shadrivov, I. V.

Shin, W.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Wang, C.

Wu, Z. J.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
[CrossRef]

Xie, Z. D.

Xin, X.

Xu, F.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
[CrossRef]

Xu, J.

Yao, N.

Yu, B. -A.

Yu, Z. Y.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
[CrossRef]

Zayats, A. V.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Zhao, Z.

Zhu, L.

L. Zhu, IEEE Photon. Technol. Lett. 22, 535 (2010).
[CrossRef]

Zhu, S. N.

F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, Opt. Express 19, 2858 (2011).
[CrossRef] [PubMed]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
[CrossRef] [PubMed]

Zhu, Y. Y.

F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, Opt. Express 19, 2858 (2011).
[CrossRef] [PubMed]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

L. Zhu, IEEE Photon. Technol. Lett. 22, 535 (2010).
[CrossRef]

Nat. Photonics

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Phys. Rev. B

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Science

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the nonlinear hybrid plasmonic waveguide. Here, metal is defined as silver and nonlinear dielectric is periodically poled LiNbO 3 . Structural parameters are: w = h = 500 nm , gap = 50 nm . ε m = 126 + 3.4 i (silver) for FF and ε m = 30.77 + 0.42 i for SH, [ ε x , ε y , ε z ] = [ 4.89 , 4.89 , 4.57 ] ( LiNbO 3 ) for FF, and [5.10, 5.10, 4.74] [14] for SH. Mode profile of E z for (b) FF and (c) SH.

Fig. 2
Fig. 2

(a) Mode profiles of FF and SH in the cross-section (in z-dimension) of this particular hybrid waveguide. (b) Intensity evolutions of FF (blue) and SH (red) in the propagation. The inset shows the spatial evolution of SH in several periods at the very beginning.

Fig. 3
Fig. 3

(a) Propagation length (L), (b) SHG efficiency and coupling coefficient ( | κ | ), (c) normalized mode area (NMA) of FF and peak position of SH as functions of the gap thickness.

Fig. 4
Fig. 4

SHG efficiency and coupling coefficient versus (a) height and (b) width of the rectangular LiNbO 3 waveguide.

Metrics