Abstract

We report a simple and repeatable method for fabricating a large-area substrate for surface-enhanced Raman scattering. The substrate was processed by three steps: (i) femtosecond (fs) laser micromachining and roughening, (ii) thin-film coating, and (iii) nanosecond laser heating and melting. Numerous gold nanoparticles of various sizes were created on the surface of the silicon substrate. The 3D micro-/nanostructures generated by the fs laser provide greater surface areas with more nanoparticles leading to 2 orders of magnitude higher of the enhancement factor than in the case of a flat substrate. Using an He–Ne laser with a 632.8nm excitation wavelength, the surface-enhanced Raman scattering enhancement factor for Rhodamine 6G was measured up to 2×107.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
    [CrossRef]
  2. D. J. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
    [CrossRef]
  3. H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
    [CrossRef] [PubMed]
  4. Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
    [CrossRef]
  5. S. Nie and S. R. Emory, Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  6. M. Kerker, J. Opt. Soc. Am. B 2, 1327 (1985).
    [CrossRef]
  7. M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).
    [CrossRef]
  8. E. Diebold, P. Peng, and E. Mazur, J. Am. Chem. Soc. 131, 16356 (2009).
    [CrossRef] [PubMed]
  9. Y. Han, X. Lan, T. Wei, H. Tsai, and H. Xiao, Appl. Phys. A 97, 721 (2009).
    [CrossRef]
  10. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Opt. Express 17, 21581 (2009).
    [CrossRef] [PubMed]
  11. Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
    [CrossRef]
  12. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
    [CrossRef]
  13. C. H. Lin, L. Jian, J. Zhou, H. Xiao, S. J. Chen, and H. L. Tsai, Opt. Lett. 35, 941 (2010).
    [CrossRef] [PubMed]
  14. L. May, C. E. Vallet, and Y. H. Lee, J. Vac. Sci. Technol. A 15, 238 (1997).
    [CrossRef]

2010 (2)

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

C. H. Lin, L. Jian, J. Zhou, H. Xiao, S. J. Chen, and H. L. Tsai, Opt. Lett. 35, 941 (2010).
[CrossRef] [PubMed]

2009 (4)

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

E. Diebold, P. Peng, and E. Mazur, J. Am. Chem. Soc. 131, 16356 (2009).
[CrossRef] [PubMed]

Y. Han, X. Lan, T. Wei, H. Tsai, and H. Xiao, Appl. Phys. A 97, 721 (2009).
[CrossRef]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Opt. Express 17, 21581 (2009).
[CrossRef] [PubMed]

2008 (1)

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
[CrossRef]

2005 (1)

M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).
[CrossRef]

2002 (1)

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

1997 (2)

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

L. May, C. E. Vallet, and Y. H. Lee, J. Vac. Sci. Technol. A 15, 238 (1997).
[CrossRef]

1985 (1)

1977 (1)

D. J. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
[CrossRef]

Ahn, Y.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Baudach, S.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Bonse, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Chai, Y. H.

Chang, S. I.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Chen, S. J.

Cheng, Y.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
[CrossRef]

Chon, H.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Choo, J.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Chung, A. J.

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

Diebold, E.

E. Diebold, P. Peng, and E. Mazur, J. Am. Chem. Soc. 131, 16356 (2009).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

Erickson, D.

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
[CrossRef]

Ha, S. M.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Han, Y.

Y. Han, X. Lan, T. Wei, H. Tsai, and H. Xiao, Appl. Phys. A 97, 721 (2009).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
[CrossRef]

Huh, Y. S.

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

Jeanmaire, D. J.

D. J. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
[CrossRef]

Jian, L.

Jiang, L.

Kautek, W.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Kerker, M.

Kruger, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Lan, X.

Y. Han, X. Lan, T. Wei, H. Tsai, and H. Xiao, Appl. Phys. A 97, 721 (2009).
[CrossRef]

Lee, E. K.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Lee, Y. H.

L. May, C. E. Vallet, and Y. H. Lee, J. Vac. Sci. Technol. A 15, 238 (1997).
[CrossRef]

Lenzner, M.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Lim, C.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Lin, C. H.

May, L.

L. May, C. E. Vallet, and Y. H. Lee, J. Vac. Sci. Technol. A 15, 238 (1997).
[CrossRef]

Mazur, E.

E. Diebold, P. Peng, and E. Mazur, J. Am. Chem. Soc. 131, 16356 (2009).
[CrossRef] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
[CrossRef]

Midorikawa, K.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
[CrossRef]

Moskovits, M.

M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

Peng, P.

E. Diebold, P. Peng, and E. Mazur, J. Am. Chem. Soc. 131, 16356 (2009).
[CrossRef] [PubMed]

Seong, G. H.

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Sugioka, K.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
[CrossRef]

Tsai, H.

Y. Han, X. Lan, T. Wei, H. Tsai, and H. Xiao, Appl. Phys. A 97, 721 (2009).
[CrossRef]

Tsai, H. L.

Vallet, C. E.

L. May, C. E. Vallet, and Y. H. Lee, J. Vac. Sci. Technol. A 15, 238 (1997).
[CrossRef]

Van Duyne, R. P.

D. J. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
[CrossRef]

Wei, T.

Y. Han, X. Lan, T. Wei, H. Tsai, and H. Xiao, Appl. Phys. A 97, 721 (2009).
[CrossRef]

Xiao, H.

Xu, J.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
[CrossRef]

Xu, Z.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
[CrossRef]

Zhou, J.

Zhou, Z.

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
[CrossRef]

Anal. Chem. (1)

H. Chon, C. Lim, S. M. Ha, Y. Ahn, E. K. Lee, S. I. Chang, G. H. Seong, and J. Choo, Anal. Chem. 82, 5290 (2010).
[CrossRef] [PubMed]

Appl. Phys. A (2)

Y. Han, X. Lan, T. Wei, H. Tsai, and H. Xiao, Appl. Phys. A 97, 721 (2009).
[CrossRef]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
[CrossRef]

J. Am. Chem. Soc. (1)

E. Diebold, P. Peng, and E. Mazur, J. Am. Chem. Soc. 131, 16356 (2009).
[CrossRef] [PubMed]

J. Electroanal. Chem. (1)

D. J. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).
[CrossRef]

J. Vac. Sci. Technol. A (1)

L. May, C. E. Vallet, and Y. H. Lee, J. Vac. Sci. Technol. A 15, 238 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Jpn. J. Appl. Phys. 47, 189 (2008).
[CrossRef]

Microfluid. Nanofluid. (1)

Y. S. Huh, A. J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

S. Nie and S. R. Emory, Science 275, 1102 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope (SEM) image of the silicon substrate after fs laser machining.

Fig. 2
Fig. 2

SEM image of the silicon substrate topography after fs laser machining and gold coating.

Fig. 3
Fig. 3

SEM image of the silicon substrate after fs laser machining, gold coating, and ns laser melting.

Fig. 4
Fig. 4

SERS spectrum for (a) fs laser- machined, gold-coated, ns laser treated area with 10 6 M R6G, 1.7 μW laser power, and 5 s acquisition time; (b) fs laser- machined and gold-coated substrate with 10 6 M R6G, 1.7 mW laser power, and 5 s acquisition time; and (c) fs laser- machined silicon with 10 3 M R6G, 17 mW laser power, and 3 s acquisition time.

Tables (1)

Tables Icon

Table 1 Enhancement Factors for SERS-Active Regions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF = I SERS × N NR I NR × N SERS ,

Metrics