Abstract

We introduce a new technique, spectral contrast imaging microscopy (SCIM), for super-resolution microscopic imaging. Based on a novel contrast mechanism that encodes each local spatial frequency with a corresponding optical wavelength, SCIM provides a real-time high-resolution spectral contrast microscopic image with superior contrast. We show that two microscopic objects, separated by a distance smaller than the diffraction limit of the optical system, can be spatially resolved in the SCIM image as different colors. Results with numerical simulation and experiments using a high-resolution United States Air Force target are presented. The ability of SCIM for imaging biological cells is also demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sheppard, Micron 38, 165 (2007).
    [CrossRef]
  2. M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081(2005).
    [CrossRef] [PubMed]
  3. S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
    [CrossRef] [PubMed]
  4. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
    [CrossRef] [PubMed]
  5. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
    [CrossRef] [PubMed]
  6. A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, Opt. Lett. 36, 885 (2011).
    [CrossRef] [PubMed]
  7. V. Mico, Z. Zalevsky, C. Ferreira, and J. Garcia, Opt. Express 16, 19260 (2008).
    [CrossRef]
  8. J. L. Zhao, X. B. Yan, W. W. Sun, and J. L. Di, Opt. Lett. 35, 3519 (2010).
    [CrossRef] [PubMed]
  9. M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, Opt. Lett. 36, 148 (2011).
    [CrossRef] [PubMed]
  10. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, Opt. Express 17, 7873 (2009).
    [CrossRef] [PubMed]
  11. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
    [CrossRef] [PubMed]
  12. T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, Opt. Lett. 35, 1136 (2010).
    [CrossRef] [PubMed]
  13. A. M. Maiden, M. J. Humphry, F. C. Zhang, and J. M. Rodenburg, J. Opt. Soc. Am. A 28, 604 (2011).
    [CrossRef]
  14. S. A. Alexandrov and D. D. Sampson, J. Opt. A 10, 025304(2008).
    [CrossRef]
  15. T. F. Nonnenmacher, G. A. Losa, and E. R. Weibel, Fractals in Biology and Medicine (Birkhäuser Verlag, 1994).
    [CrossRef]
  16. J. M. Schmitt and A. Knuttel, J. Opt. Soc. Am. A 14, 1231(1997).
    [CrossRef]

2011 (4)

2010 (2)

2009 (1)

2008 (2)

2007 (2)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

C. Sheppard, Micron 38, 165 (2007).
[CrossRef]

2006 (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

2005 (1)

M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081(2005).
[CrossRef] [PubMed]

2003 (1)

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

1997 (1)

Alexandrov, S. A.

Calabuig, A.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Choi, W.

Choi, Y.

Dasari, R. R.

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Di, J. L.

Fang-Yen, C.

Feld, M. S.

Ferreira, C.

Garcia, J.

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081(2005).
[CrossRef] [PubMed]

Gutzler, T.

Hell, S. W.

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

Hillman, T. R.

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Humphry, M. J.

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Kim, M.

Knuttel, A.

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Losa, G. A.

T. F. Nonnenmacher, G. A. Losa, and E. R. Weibel, Fractals in Biology and Medicine (Birkhäuser Verlag, 1994).
[CrossRef]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Maiden, A. M.

Mico, V.

Nonnenmacher, T. F.

T. F. Nonnenmacher, G. A. Losa, and E. R. Weibel, Fractals in Biology and Medicine (Birkhäuser Verlag, 1994).
[CrossRef]

Rodenburg, J. M.

Sampson, D. D.

Schmitt, J. M.

Sheppard, C.

C. Sheppard, Micron 38, 165 (2007).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Sun, W. W.

Sung, Y. J.

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Weibel, E. R.

T. F. Nonnenmacher, G. A. Losa, and E. R. Weibel, Fractals in Biology and Medicine (Birkhäuser Verlag, 1994).
[CrossRef]

Yan, X. B.

Zalevsky, Z.

Zhang, F. C.

Zhao, J. L.

J. Opt. A (1)

S. A. Alexandrov and D. D. Sampson, J. Opt. A 10, 025304(2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

Micron (1)

C. Sheppard, Micron 38, 165 (2007).
[CrossRef]

Nat. Biotechnol. (1)

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081(2005).
[CrossRef] [PubMed]

Science (1)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Other (1)

T. F. Nonnenmacher, G. A. Losa, and E. R. Weibel, Fractals in Biology and Medicine (Birkhäuser Verlag, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of spectral contrast imaging (θ is the illumination angle, and α is the scattering angle).

Fig. 2
Fig. 2

Numerical simulation: (a) object (three element of Group 9 of HR-Group target), (b) conventional bright-field image, NA = 0.05 , (c), (d) SCIM images for (c) y- and (d) x-oriented subelements, NA = 0.05 , and (e), (f) corresponding cross-sectional intensity distributions for the SCIM images, where each wavelength is represented with the corresponding color: 560 nm (yellow), 499 nm (green), and 444 nm (blue), and for the conventional image (black curve) in the image plane along the y direction.

Fig. 3
Fig. 3

Experimental results: (a) high-resolution ( NA = 0.5 ) image of object (Group 9 of the HR-USAF target); (b) conventional image, NA = 0.05 ; (c), (d) SCIM images ( NA = 0.05 ) for (c) y- and (d) x-oriented subelements. The scale bar is 4 μm . The color bar represents dominant wavelengths (λ) and corresponding spatial frequencies ( ν s ) of the three-bar structure for each subelement.

Fig. 4
Fig. 4

Microscopic images ( NA = 0.5 ) of unstained HeLa cell with three different contrast mechanisms: (a) bright-field image, (b) phase-contrast image, (c) SCIM image. The scale bar is 4 μm .

Metrics