Abstract

We present a comprehensive numerical analysis of the guiding of a photonic signal in the form of a strongly con fined asymmetric surface plasmon polariton (SPP) mode along metallic nanowire waveguides. The proposed approach provides extremely high localization of the SPP mode, nanoscale integration density, and a feasible technological platform. The waveguide performance was studied over a broad range of subwavelength cross sections at a telecommunication wavelength. It was optimized using a conventional figure of merit for data transfer along a straight waveguide and an all-inclusive figure of merit has been introduced.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.I.Bozhevolvyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
    [CrossRef]
  2. A. V. Krasavin and A. V. Zayats, Opt. Express 18, 11791 (2010).
    [CrossRef] [PubMed]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  4. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007).
    [CrossRef]
  5. P. Berini, Phys. Rev. B 61, 10484 (2000).
    [CrossRef]
  6. E. Verhagen, M. Spasenovic, A. Polman, and L. (Kobus) Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef] [PubMed]
  7. M. Nezhad, K. Tetz, and Y. Feinman, Opt. Express 12, 4072 (2004).
    [CrossRef] [PubMed]
  8. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 2010).
  9. A. V. Krasavin and A. V. Zayats, Opt. Lett. 35, 2118 (2010).
    [CrossRef] [PubMed]
  10. R. Buckley and P. Berini, Opt. Express 15, 12174 (2007).
    [CrossRef] [PubMed]
  11. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New. J. Phys. 10, 105018 (2008).
    [CrossRef]

2010

2009

E. Verhagen, M. Spasenovic, A. Polman, and L. (Kobus) Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

2008

S.I.Bozhevolvyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New. J. Phys. 10, 105018 (2008).
[CrossRef]

2007

R. Buckley and P. Berini, Opt. Express 15, 12174 (2007).
[CrossRef] [PubMed]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007).
[CrossRef]

2004

2000

P. Berini, Phys. Rev. B 61, 10484 (2000).
[CrossRef]

1997

(Kobus) Kuipers, L.

E. Verhagen, M. Spasenovic, A. Polman, and L. (Kobus) Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New. J. Phys. 10, 105018 (2008).
[CrossRef]

Berini, P.

Bozhevolnyi, S. I.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007).
[CrossRef]

Buckley, R.

Feinman, Y.

Jung, J.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007).
[CrossRef]

Kobayashi, T.

Krasavin, A. V.

Morimoto, A.

Nezhad, M.

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New. J. Phys. 10, 105018 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New. J. Phys. 10, 105018 (2008).
[CrossRef]

Polman, A.

E. Verhagen, M. Spasenovic, A. Polman, and L. (Kobus) Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Sondergaard, T.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenovic, A. Polman, and L. (Kobus) Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Takahara, J.

Taki, H.

Tetz, K.

Verhagen, E.

E. Verhagen, M. Spasenovic, A. Polman, and L. (Kobus) Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Yamagishi, S.

Zayats, A. V.

Zhang, X.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New. J. Phys. 10, 105018 (2008).
[CrossRef]

New. J. Phys.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New. J. Phys. 10, 105018 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007).
[CrossRef]

P. Berini, Phys. Rev. B 61, 10484 (2000).
[CrossRef]

Phys. Rev. Lett.

E. Verhagen, M. Spasenovic, A. Polman, and L. (Kobus) Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Other

S.I.Bozhevolvyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
[CrossRef]

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Field map of power flow P z of the asymmetric SPP mode at λ = 1550 nm , supported by a 50 nm × 50 nm Au waveguide embedded in InGaAsP. The dependences of the (b) real part of the mode effective refractive index, (c) effective mode area, and (d) propagation length of the mode on waveguide geometrical parameters.

Fig. 2
Fig. 2

(a) Maps of power flow along the waveguide for 25 nm × 25 nm , 450 nm × 25 nm , and 450 nm × 450 nm waveguides. (b) Figure of merit M 1 as a function of waveguide geometrical parameters.

Fig. 3
Fig. 3

Modified figures of merit M 1 3 D (solid black curve) and M 1 * (defined for L coupl = 5 μm dashed black curve, L coupl = 10 μm dashed blue curve, L coupl = 25 μm dashed green curve, L coupl = 250 μm dashed red curve) as functions of waveguide size s for waveguides of a square cross section. The top insets show the | Re ( E y ) | map of the mode transmission through a bend along with the vertical cross section of a waveguide and a horizontal cross section of the bend.

Metrics