Abstract

We report a successful experimental realization of a 2×2 suspended silica splitter integrated on a silicon substrate. The silica splitter was photo-lithographically patterned, etched, and reflowed to form the suspended and rounded silica waveguide channels. The silica splitter showed a flat splitting ratio and excess loss over a wide wavelength range from 1520 to 1630nm with a low crosstalk. Additionally, as a result of the very low nonlinear coefficients of silica, the splitting ratio is independent of input power.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, Opt. Lett. 27, 1400 (2002).
    [CrossRef]
  2. Y. Murakami, M. Ikeda, and T. Izawa, IEEE J. Quantum Electron. 17, 982 (1981).
    [CrossRef]
  3. Q. Wang and J. Yao, Opt. Express 15, 16500 (2007).
    [CrossRef] [PubMed]
  4. K.-X. Sun, M. M. Fejer, E. K. Gustafson, and R. L. Byer, Opt. Lett. 22, 1485 (1997).
    [CrossRef]
  5. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
    [CrossRef]
  6. K. G. Han, S. Kim, D. H. Kim, J. C. Jo, and S. S. Choi, Opt. Lett. 16, 1086 (1991).
    [CrossRef] [PubMed]
  7. S.-W. Seo, S.-Y. Cho, and N. M. Jokerst, Opt. Lett. 32, 548 (2007).
    [CrossRef] [PubMed]
  8. M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
    [CrossRef]
  9. A. W. Snyder, and Y. Chen, Opt. Lett. 14, 517 (1989).
    [CrossRef] [PubMed]
  10. T. Miya, IEEE J. Select. Topics Quantum Electron. 6, 38 (2000).
    [CrossRef]
  11. J. B. Eom, J.-H. Park, and B. H. Lee, Opt. Lett. 34, 3737 (2009).
    [CrossRef] [PubMed]
  12. R. J. Deri and R. J. Hawkins, Opt. Lett. 13, 922 (1988).
    [CrossRef] [PubMed]
  13. M. Munowitz and D. J. Vezzetti, J. Lightwave Technol. 10, 1570 (1992).
    [CrossRef]
  14. F. Ladouceur and E. Labeye, J. Lightwave Technol. 13, 481 (1995).
    [CrossRef]
  15. W. A. Gambling, H. Matsumura, and C. M. Ragdale, Electron. Lett. 14, 130 (1978).
    [CrossRef]
  16. Z. Jakubczyk, R. Tremblay, and R. Vallee, J. Appl. Phys. 66, 5113 (1989).
    [CrossRef]
  17. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, Opt. Lett. 21, 618 (1996).
    [CrossRef] [PubMed]

2009 (1)

2007 (2)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

2002 (1)

2000 (1)

T. Miya, IEEE J. Select. Topics Quantum Electron. 6, 38 (2000).
[CrossRef]

1997 (1)

1996 (2)

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
[CrossRef]

B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, Opt. Lett. 21, 618 (1996).
[CrossRef] [PubMed]

1995 (1)

F. Ladouceur and E. Labeye, J. Lightwave Technol. 13, 481 (1995).
[CrossRef]

1992 (1)

M. Munowitz and D. J. Vezzetti, J. Lightwave Technol. 10, 1570 (1992).
[CrossRef]

1991 (1)

1989 (2)

A. W. Snyder, and Y. Chen, Opt. Lett. 14, 517 (1989).
[CrossRef] [PubMed]

Z. Jakubczyk, R. Tremblay, and R. Vallee, J. Appl. Phys. 66, 5113 (1989).
[CrossRef]

1988 (1)

1981 (1)

Y. Murakami, M. Ikeda, and T. Izawa, IEEE J. Quantum Electron. 17, 982 (1981).
[CrossRef]

1978 (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Electron. Lett. 14, 130 (1978).
[CrossRef]

Amersfoort, M. R.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
[CrossRef]

Andreadakis, N. C.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
[CrossRef]

Bur, J.

Byer, R. L.

Caneau, C.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
[CrossRef]

Chen, Y.

Cho, S.-Y.

Choi, S. S.

Chow, E.

Deri, R. J.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

Eom, J. B.

Fejer, M. M.

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Electron. Lett. 14, 130 (1978).
[CrossRef]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

Gustafson, E. K.

Han, K. G.

Harris, R. D.

Hawkins, R. J.

Ikeda, M.

Y. Murakami, M. Ikeda, and T. Izawa, IEEE J. Quantum Electron. 17, 982 (1981).
[CrossRef]

Izawa, T.

Y. Murakami, M. Ikeda, and T. Izawa, IEEE J. Quantum Electron. 17, 982 (1981).
[CrossRef]

Jakubczyk, Z.

Z. Jakubczyk, R. Tremblay, and R. Vallee, J. Appl. Phys. 66, 5113 (1989).
[CrossRef]

Jo, J. C.

Joannopoulos, J. D.

Johnson, S. G.

Jokerst, N. M.

Kim, D. H.

Kim, S.

Labeye, E.

F. Ladouceur and E. Labeye, J. Lightwave Technol. 13, 481 (1995).
[CrossRef]

Ladouceur, F.

F. Ladouceur and E. Labeye, J. Lightwave Technol. 13, 481 (1995).
[CrossRef]

LeBlanc, H. P.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
[CrossRef]

Lee, B. H.

Lin, S. Y.

Luff, B. J.

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Electron. Lett. 14, 130 (1978).
[CrossRef]

Miya, T.

T. Miya, IEEE J. Select. Topics Quantum Electron. 6, 38 (2000).
[CrossRef]

Munowitz, M.

M. Munowitz and D. J. Vezzetti, J. Lightwave Technol. 10, 1570 (1992).
[CrossRef]

Murakami, Y.

Y. Murakami, M. Ikeda, and T. Izawa, IEEE J. Quantum Electron. 17, 982 (1981).
[CrossRef]

Park, J.-H.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Electron. Lett. 14, 130 (1978).
[CrossRef]

Rajhel, A.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
[CrossRef]

Schiffrin, D. J.

Seo, S.-W.

Snyder, A. W.

Soole, J. B. D.

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
[CrossRef]

Sun, K.-X.

Tremblay, R.

Z. Jakubczyk, R. Tremblay, and R. Vallee, J. Appl. Phys. 66, 5113 (1989).
[CrossRef]

Vallee, R.

Z. Jakubczyk, R. Tremblay, and R. Vallee, J. Appl. Phys. 66, 5113 (1989).
[CrossRef]

Vezzetti, D. J.

M. Munowitz and D. J. Vezzetti, J. Lightwave Technol. 10, 1570 (1992).
[CrossRef]

Wang, Q.

Wilkinson, J. S.

Wilson, R.

Yao, J.

Appl. Phys. Lett. (1)

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

Electron. Lett. (2)

M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, Electron. Lett. 32, 449 (1996).
[CrossRef]

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Electron. Lett. 14, 130 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Murakami, M. Ikeda, and T. Izawa, IEEE J. Quantum Electron. 17, 982 (1981).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

T. Miya, IEEE J. Select. Topics Quantum Electron. 6, 38 (2000).
[CrossRef]

J. Appl. Phys. (1)

Z. Jakubczyk, R. Tremblay, and R. Vallee, J. Appl. Phys. 66, 5113 (1989).
[CrossRef]

J. Lightwave Technol. (2)

M. Munowitz and D. J. Vezzetti, J. Lightwave Technol. 10, 1570 (1992).
[CrossRef]

F. Ladouceur and E. Labeye, J. Lightwave Technol. 13, 481 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Overview of the fabrication process of the splitter. (a) A dual photolithography and buffered HF etching procedure to achieve the rectangular shaped silica waveguides with a tapered region, (b)  XeF 2 etching to isotropically undercut the silica structure, and (c)  CO 2 laser reflow to form the circular silica waveguide channels. Rendering showing the device in operation. (d) scanning electron microscope image of the splitter, which has two input and output silica circular waveguide channels with a suspended, tapered region. Inset is the cross section view, which shows the circular feature of the waveguides. Note: Parts (a)–(c) are artistic renderings drawn in Pov-Ray.

Fig. 2
Fig. 2

Output intensity profile from the 2 × 2 silica splitter showing a 50 / 50 splitting ratio with low crosstalk and high uniformity.

Fig. 3
Fig. 3

Optical characterization of the 2 × 2 splitter. The (a) splitting ratio versus wavelength and (b) EL versus wavelength were measured from 1520 to 1630 nm . Both metrics are quite smooth and flat over the wavelength range.

Fig. 4
Fig. 4

The splitting ratio (red circles, black diamonds) and output power (blue squares) versus input power. The splitting ratio is constant over the entire range and the output power changes linearly with the input power. Both indicate that the device’s behavior is not being affected by any nonlinear effects over this range of input power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EL = 10 log P through + P cross P input .

Metrics