Abstract

We demonstrate a monolithic and quasi-phasematched singly resonant cw optical parametric oscillator in periodically poled lithium niobate. The threshold is 1.0W and the OPO delivers up to 0.98W signal power tunable between 1750 and 1950nm (2710 and 2340nm idler, respectively). We identify cascaded parasitic oscillation effects and analyze their behavior theoretically, showing good agreement with our experiment. The analysis of parasitic effects points the way to improved device designs that should enable stable, compact, and frequency-tunable sources.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Yang, R. C. Eckardt, and R. L. Byer, Opt. Lett. 18, 971(1993).
    [CrossRef] [PubMed]
  2. L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
    [CrossRef]
  3. W. Kozlovsky, C. Nabors, R. Eckardt, and R. Byer, Opt. Lett. 14, 66 (1989).
    [CrossRef] [PubMed]
  4. J. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, Opt. Lett. 36, 864 (2011).
    [CrossRef] [PubMed]
  5. M. Taya, M. C. Bashaw, and M. M. Fejer, Opt. Lett. 21, 857 (1996).
    [CrossRef] [PubMed]
  6. C. R. Phillips and M. M. Fejer, J. Opt. Soc. Am. B 27, 2687(2010).
    [CrossRef]
  7. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]
  8. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, Opt. Express 17, 87 (2009).
    [CrossRef] [PubMed]
  9. R. Boyd, Nonlinear Optics (2008).
  10. R. Sowade, I. Breunig, I. Cmara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, Opt. Express 17, 22303(2009).
    [CrossRef]
  11. A. V. Okishev and J. D. Zuegel, Opt. Express 14, 12169(2006).
    [CrossRef] [PubMed]
  12. A. Henderson and R. Stafford, Opt. Lett. 32, 1281 (2007).
    [CrossRef] [PubMed]
  13. S. Schiller, “Principles and applications of optical monolithic total internal reflection resonators,” Ph.D. thesis (Stanford University, 2006).
  14. K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).
    [CrossRef]

2011

2010

2009

2008

K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).
[CrossRef]

2007

2006

1997

D. H. Jundt, Opt. Lett. 22, 1553 (1997).
[CrossRef]

L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

1996

1993

1989

Bashaw, M. C.

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

Boyd, R.

R. Boyd, Nonlinear Optics (2008).

Breunig, I.

Buse, K.

Byer, R.

Byer, R. L.

Chang, D.

Dierolf, V.

Eckardt, R.

Eckardt, R. C.

Fejer, M. M.

Henderson, A.

Jundt, D. H.

Kiessling, J.

Kozlovsky, W.

Langrock, C.

Mayorga, I. Cmara

Myers, L. E.

L. E. Myers and W. R. Bosenberg, IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

Nabors, C.

Okishev, A. V.

Pelc, J.

Phillips, C. R.

Schiller, S.

S. Schiller, “Principles and applications of optical monolithic total internal reflection resonators,” Ph.D. thesis (Stanford University, 2006).

Sowade, R.

Stafford, R.

Taya, M.

Tulea, C.

Vodopyanov, K. L.

K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).
[CrossRef]

Yang, S. T.

Zuegel, J. D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the OPO, showing the path of the resonant signal.

Fig. 2
Fig. 2

(a) Output signal power as a function of input pump power, (b) signal wavelength tuning with temperature. Inset: spectrum, measured with 0.04 nm resolution.

Fig. 3
Fig. 3

Pulsed-OPO measurement at peak N 2.5 and 150 ° C . Powers are shown for the transmitted and reflected pump (solid blue and dot-dashed black), the transmitted signal (solid red), the transmitted Stokes (dotted black), and the input pump (dashed blue). The signal and Stokes wavelengths are 1.78 and 2.005 μm , respectively. The powers are rescaled for clarity; the Stokes wave was measured on a slow pyroelectric detector.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G ( g I s 1 ) ( 1 k s 1 + 1 k s 2 ) 1 ϕ Gouy π P s 1 ,
( g I s 1 ) THz - OPA = 32 π 2 ϵ 0 c n s 1 n s 2 n T λ s 2 λ T d eff , T 2 α T ,

Metrics