Abstract

We have studied the effects of the Berry phase on the linear transmission properties of optical microcoil resonators and analyzed the resonant behavior for different input polarizations and coil geometries. Contrary to previous expectations, we find that on resonance the size of the Berry phase shift can be magnified significantly, leading to a measurable polarization rotation for some geometries. Our model also considers other polarization effects including elasto-optic bend birefringence and the polarization dependent coupling coefficients, which were also previously neglected, and we still find that observable Berry phase effects persist. For example, in a three turn microcoil with a diameter of 0.2mm, close to 100% of an initially x polarized light will be coupled into the orthogonal y polarization, due to the optical activity arising from the cumulative effects of Berry phase on resonance. More generally, the cross-polarization coupling also significantly influences the resonance extinction ratio and quality factor.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, Opt. Express 12, 2303 (2004).
    [CrossRef] [PubMed]
  2. N. G. R. Broderick, Opt. Express 16, 16247 (2008).
    [CrossRef] [PubMed]
  3. F. Xu and G. Brambilla, Appl. Phys. Lett. 92, 101126 (2008).
    [CrossRef]
  4. J. Scheuer, Opt. Lett. 34, 1630 (2009).
    [CrossRef] [PubMed]
  5. N. G. R. Broderick and T. Ng, IEEE Photon. Technol. Lett. 21, 444 (2009).
    [CrossRef]
  6. M. Sumetsky, Opt. Express 13, 4331 (2005).
    [CrossRef] [PubMed]
  7. T. Lee, N. G. R. Broderick, and G. Brambilla, Opt. Commun. 284, 1837 (2011).
    [CrossRef]
  8. I. Golub, T. Audet, and L. Imobekhai, J. Opt. Soc. Am. B 27, 1698 (2010).
    [CrossRef]
  9. S. G. Lipson, Opt. Lett. 15, 154 (1990).
    [CrossRef] [PubMed]
  10. M. V. Berry, Nature 326, 277 (1987).
    [CrossRef]
  11. A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
    [CrossRef] [PubMed]
  12. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Opt. Lett. 5, 273 (1980).
    [CrossRef] [PubMed]

2011 (1)

T. Lee, N. G. R. Broderick, and G. Brambilla, Opt. Commun. 284, 1837 (2011).
[CrossRef]

2010 (1)

2009 (2)

J. Scheuer, Opt. Lett. 34, 1630 (2009).
[CrossRef] [PubMed]

N. G. R. Broderick and T. Ng, IEEE Photon. Technol. Lett. 21, 444 (2009).
[CrossRef]

2008 (2)

F. Xu and G. Brambilla, Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

N. G. R. Broderick, Opt. Express 16, 16247 (2008).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

1990 (1)

1987 (1)

M. V. Berry, Nature 326, 277 (1987).
[CrossRef]

1986 (1)

A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
[CrossRef] [PubMed]

1980 (1)

Audet, T.

Berry, M. V.

M. V. Berry, Nature 326, 277 (1987).
[CrossRef]

Brambilla, G.

T. Lee, N. G. R. Broderick, and G. Brambilla, Opt. Commun. 284, 1837 (2011).
[CrossRef]

F. Xu and G. Brambilla, Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

Broderick, N. G. R.

T. Lee, N. G. R. Broderick, and G. Brambilla, Opt. Commun. 284, 1837 (2011).
[CrossRef]

N. G. R. Broderick and T. Ng, IEEE Photon. Technol. Lett. 21, 444 (2009).
[CrossRef]

N. G. R. Broderick, Opt. Express 16, 16247 (2008).
[CrossRef] [PubMed]

Chiao, R. Y.

A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
[CrossRef] [PubMed]

Eickhoff, W.

Golub, I.

Imobekhai, L.

Lee, T.

T. Lee, N. G. R. Broderick, and G. Brambilla, Opt. Commun. 284, 1837 (2011).
[CrossRef]

Lipson, S. G.

Ng, T.

N. G. R. Broderick and T. Ng, IEEE Photon. Technol. Lett. 21, 444 (2009).
[CrossRef]

Rashleigh, S. C.

Scheuer, J.

Sumetsky, M.

Tomita, A.

A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
[CrossRef] [PubMed]

Ulrich, R.

Xu, F.

F. Xu and G. Brambilla, Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

F. Xu and G. Brambilla, Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. G. R. Broderick and T. Ng, IEEE Photon. Technol. Lett. 21, 444 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

M. V. Berry, Nature 326, 277 (1987).
[CrossRef]

Opt. Commun. (1)

T. Lee, N. G. R. Broderick, and G. Brambilla, Opt. Commun. 284, 1837 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Uniform microcoil formed by wrapping microfiber around a rod. Inset shows the local x y fiber axes.

Fig. 2
Fig. 2

OMR output spectrum showing the coupling of light between the x and y polarization states due to Berry phase effects for an input polarzed along (a) the x axis, with no loss, (b) the x axis, with loss, (c) the y axis, and (d) at π / 4 rad . For (b)–(d), the loss is α = 4.6 m 1 . Parameters: three turn OMR, | A in | = 1 , r = 0.5 μm , R = 0.1 mm , p = 2.50 μm , κ x = 5770 m 1 , κ y = 6163 m 1 , τ = 40 m 1 .

Fig. 3
Fig. 3

(a) Output power against detuning from resonance for helix torsion values τ from 0 to 40 m 1 . (b) Resonance ER (dashed) and Q factor (solid) against τ. Other parameters are the same as Fig. 2.

Fig. 4
Fig. 4

Output power against pitch in the (a) x polarization and (b) y polarization. (c) The fraction of output power in the y polarization, η, and coupling coefficients as a function of pitch. Input is x polarized, and the other parameters are the same as Fig. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d A j x d s = i κ x ( A j 1 x + A j + 1 x ) + τ A j y + ( i Δ β b i C 2 2 β α ) A j x ,
d A j y d s = i κ y ( A j 1 y + A j + 1 y ) τ A j x α A j y ,
A j x , y ( 0 ) = { A in x , y j = 1 A j 1 x , y ( S ) exp ( i β S ) j = 2 n .

Metrics