Abstract

We report the experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model (EGSM) source based on the technique for measuring the fourth-order correlation function (i.e., intensity correlation function). Furthermore, we carry out experimental measurement of the intensity distribution of a focused EGSM beam, and we carry out theoretical simulation using the measured beam parameters. Our experimental results agree reasonably well with the theoretical predictions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, J. Opt. A 3, 1 (2001).
    [CrossRef]
  2. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  3. F. Gori, M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, J. Opt. Soc. Am. A 25, 1016 (2008).
    [CrossRef]
  4. M. Yao, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, Opt. Lett. 33, 2266 (2008).
    [CrossRef] [PubMed]
  5. S. Zhu, Y. Cai, and O. Korotkova, Opt. Express 18, 12587(2010).
    [CrossRef] [PubMed]
  6. O. Korotkova, Opt. Commun. 281, 2342 (2008).
  7. B. Kanseri, S. Rath, and H. C. Kandpal, IEEE J. Quantum Electron. 45, 1163 (2009).
    [CrossRef]
  8. M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, J. Opt. Soc. Am. A 26, 1437 (2009).
    [CrossRef]
  9. P. D. Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
    [CrossRef]
  10. www. correlator.com.
  11. F. Wang and Y. Cai, J. Opt. Soc. Am. A 24, 1937 (2007).
    [CrossRef]
  12. L. Mandel and E. Wolf, eds., Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 36–38, 428.

2010 (1)

2009 (2)

B. Kanseri, S. Rath, and H. C. Kandpal, IEEE J. Quantum Electron. 45, 1163 (2009).
[CrossRef]

M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, J. Opt. Soc. Am. A 26, 1437 (2009).
[CrossRef]

2008 (3)

2007 (1)

2003 (1)

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

2001 (1)

F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, J. Opt. A 3, 1 (2001).
[CrossRef]

1995 (1)

L. Mandel and E. Wolf, eds., Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 36–38, 428.

1979 (1)

P. D. Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Baykal, Y.

Borghi, R.

Cai, Y.

Eyyuboglu, H. T.

Gori, F.

F. Gori, M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, J. Opt. Soc. Am. A 25, 1016 (2008).
[CrossRef]

F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, J. Opt. A 3, 1 (2001).
[CrossRef]

P. D. Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Guattari, G.

P. D. Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Kandpal, H. C.

B. Kanseri, S. Rath, and H. C. Kandpal, IEEE J. Quantum Electron. 45, 1163 (2009).
[CrossRef]

Kanseri, B.

B. Kanseri, S. Rath, and H. C. Kandpal, IEEE J. Quantum Electron. 45, 1163 (2009).
[CrossRef]

Korotkova, O.

Mandel, L.

L. Mandel and E. Wolf, eds., Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 36–38, 428.

Mondello, A.

F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, J. Opt. A 3, 1 (2001).
[CrossRef]

Palma, C.

P. D. Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Piquero, G.

F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, J. Opt. A 3, 1 (2001).
[CrossRef]

Ramírez-Sánchez, V.

Rath, S.

B. Kanseri, S. Rath, and H. C. Kandpal, IEEE J. Quantum Electron. 45, 1163 (2009).
[CrossRef]

Santarsiero, M.

Santis, P. D.

P. D. Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Simon, R.

F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, J. Opt. A 3, 1 (2001).
[CrossRef]

Wang, F.

Wolf, E.

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

L. Mandel and E. Wolf, eds., Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 36–38, 428.

Yao, M.

Zhu, S.

IEEE J. Quantum Electron. (1)

B. Kanseri, S. Rath, and H. C. Kandpal, IEEE J. Quantum Electron. 45, 1163 (2009).
[CrossRef]

J. Opt. A (1)

F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, J. Opt. A 3, 1 (2001).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (2)

O. Korotkova, Opt. Commun. 281, 2342 (2008).

P. D. Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Other (2)

www. correlator.com.

L. Mandel and E. Wolf, eds., Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 36–38, 428.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for generating an EGSM source and measuring its beam parameters. LS, He–Ne laser; P 1 , P 2 , linear polarizers; BS, 50 50 beam splitter; PBS, polarization beam splitter; L 1 , L 2 , L 3 , L 4 , thin lenses; M, reflecting mirror; RGGP, rotating ground-glass plate; GAF, Gaussian amplitude filter; D 1 , D 2 , single photon detectors.

Fig. 2
Fig. 2

Experimental scheme for measuring the parameters | B x y | and δ x y .

Fig. 3
Fig. 3

Experimental results (dotted curves) and corresponding Gaussian fit (solid curves) of the intensity distributions of the x component and y component of the EGSM source.

Fig. 4
Fig. 4

Experimental results (dotted curves) and corresponding Gaussian fit (solid curves) of the normalized FOCFs.

Fig. 5
Fig. 5

Experimental results of the intensity distribution (contour graph) and the corresponding cross line (dotted curve) of the generated EGSM beam at the focal plane after passing through a linear polarizer with (a)  θ 1 = π / 4 , (b)  θ 1 = π / 4 . The solid curves are calculated by theoretical formulae.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

J α β ( ρ 1 , ρ 2 ) = A α A β B α β exp [ ρ 1 2 4 σ α 2 ρ 2 2 4 σ β 2 ] exp [ ( ρ 1 ρ 2 ) 2 2 δ α β 2 ] ,
J α β ( r ˜ ) = A α A β B α β [ det ( A ¯ + B ¯ M 0 α β 1 ) ] × exp [ i k 2 r ˜ T ( C ¯ + D ¯ M 0 α β 1 ) ( A ¯ + B ¯ M 0 α β 1 ) 1 r ˜ ] ,
M 0 α β 1 = ( m 11 I m 12 I m 21 I m 22 I ) ,
A ¯ = ( A 0 I 0 I A * ) , B ¯ = ( B 0 I 0 I B * ) , C ¯ = ( C 0 I 0 I C * ) , D ¯ = ( D 0 I 0 I D * ) ,
g x x ( 2 ) ( u 1 v 1 , τ ) = I x ( u 1 , t ) I x ( v 1 , t + τ ) I x ( u 1 , t ) I x ( v 1 , t + τ ) ,
g x x ( 2 ) ( u 1 v 1 , τ = 0 ) = 1 + exp [ ( u 1 v 1 ) 2 δ x x 2 ] .
g x y ( 2 ) ( u 1 v 1 , τ = 0 ) = I x ( u 1 , t ) I y ( v 1 , t ) I x ( u 1 , t ) I y ( v 1 , t ) = 1 + | B x y | 2 exp [ ( u 1 v 1 ) 2 δ x y 2 ] .
( δ x x 2 + δ y y 2 ) / 2 δ x y δ x x δ y y / | B x y | .
J θ ( ρ 1 , ρ 2 ) = T ^ ( θ 1 ) J ( ρ 1 , ρ 2 ) T ^ ( θ 1 ) ,
T ^ ( θ ) = ( cos 2 θ 1 cos θ 1 sin θ 1 cos θ 1 sin θ 1 sin 2 θ 1 ) .
A = 0 I , B = f I , C = ( 1 / f ) I , D = I .

Metrics