Abstract

We propose a scheme to generate ultrawideband (UWB) monocycle pulses using delayed interference of a π/2 phase-shift keying (PSK) signal. The PSK signal is generated with an optical phase modulator. A fiber-based delay interferometer is used to provide the delay together with a ±π/2 phase shift between the signals in its two arms before the interference. The two opposite phase shifts correspond to the generation of a pair of polarity-reversed UWB monocycle pulses. The full width at half maximum of the pulses is ~68ps and the 10dB fractional bandwidth is 168%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
    [CrossRef]
  2. S. Pan and J. Yao, J. Lightwave Technol. 28, 2445 (2010).
    [CrossRef]
  3. X. Chen and S. Kiaei, in Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 1 (IEEE, 2002), pp. I-597.
  4. J. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
    [CrossRef]
  5. Q. Wang, F. Zeng, S. Blais, and J. Yao, Opt. Lett. 31, 3083 (2006).
    [CrossRef] [PubMed]
  6. J. Dong, X. Zhang, J. Xu, and D. Huang, Opt. Lett. 32, 1223 (2007).
    [CrossRef] [PubMed]
  7. H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
    [CrossRef]
  8. J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
    [CrossRef]
  9. S. Pan and J. Yao, Opt. Lett. 34, 160 (2009).
    [CrossRef] [PubMed]
  10. M. P. Fok, K. L. Lee, and C. Shu, IEEE Photon. Technol. Lett. 17, 1393 (2005).
    [CrossRef]
  11. M. P. Fok and C. Shu, Opt. Lett. 33, 2845, (2008).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (2)

M. P. Fok and C. Shu, Opt. Lett. 33, 2845, (2008).
[CrossRef] [PubMed]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (1)

M. P. Fok, K. L. Lee, and C. Shu, IEEE Photon. Technol. Lett. 17, 1393 (2005).
[CrossRef]

2003 (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

2002 (1)

X. Chen and S. Kiaei, in Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 1 (IEEE, 2002), pp. I-597.

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Blais, S.

Chen, H.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
[CrossRef]

Chen, M.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
[CrossRef]

Chen, X.

X. Chen and S. Kiaei, in Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 1 (IEEE, 2002), pp. I-597.

Dong, J.

Fok, M. P.

M. P. Fok and C. Shu, Opt. Lett. 33, 2845, (2008).
[CrossRef] [PubMed]

M. P. Fok, K. L. Lee, and C. Shu, IEEE Photon. Technol. Lett. 17, 1393 (2005).
[CrossRef]

Fu, S.

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Huang, D.

Kiaei, S.

X. Chen and S. Kiaei, in Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 1 (IEEE, 2002), pp. I-597.

Lee, K. L.

M. P. Fok, K. L. Lee, and C. Shu, IEEE Photon. Technol. Lett. 17, 1393 (2005).
[CrossRef]

Li, J.

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Lin, J.

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Pan, S.

Qiu, C.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Shu, C.

M. P. Fok and C. Shu, Opt. Lett. 33, 2845, (2008).
[CrossRef] [PubMed]

M. P. Fok, K. L. Lee, and C. Shu, IEEE Photon. Technol. Lett. 17, 1393 (2005).
[CrossRef]

Shum, P.

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Tang, M.

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Wang, Q.

Wu, J.

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Xie, S.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
[CrossRef]

Xu, J.

Xu, K.

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Yao, J.

Zeng, F.

Zhang, J.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
[CrossRef]

Zhang, X.

Electron. Lett. (1)

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

M. P. Fok, K. L. Lee, and C. Shu, IEEE Photon. Technol. Lett. 17, 1393 (2005).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (4)

Other (1)

X. Chen and S. Kiaei, in Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 1 (IEEE, 2002), pp. I-597.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of UWB monocycle pulse generation based on delayed interference of π / 2 PSK signal.

Fig. 2
Fig. 2

Experimental setup. TL, tunable laser; PM, phase modulator; PD, photodetector; SMF, single-mode fiber. Inset shows the input electrical waveform.

Fig. 3
Fig. 3

(a)–(c) Generated UWB monocycle waveforms, and (d)–(f) corresponding RF spectra. f, repetition rate; Δ φ , phase shift between two arms in the DI. Dashed line in subfigure (f), FCC mask.

Fig. 4
Fig. 4

(a) Simulated monocycle waveforms after transmission in an SMF of different lengths. (b) Measured waveform and (c) measured RF spectrum after transmission in an 8.5 km SMF.

Fig. 5
Fig. 5

(a) Original UWB pulse train before modulation. (b) UWB pulse train after pulse-position modulation.

Metrics