Abstract

We demonstrate a method to easily and quickly determine the local fringe density map of a fringe pattern. The method is based on an isotropic adaptive bandpass filter that is tuned at different frequencies. The modulation map after applying a specific bandpass frequencies filter presents a maximum response in the regions where the bandpass filter and fringe frequencies coincide. We show a set of simulations and experimental results that prove the effectiveness of the proposed method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Jun and A. Asundi, Appl. Opt. 41, 7229 (2002).
    [CrossRef] [PubMed]
  2. M. Kass and A. Witkin, Comput. Vis. Graph. Image Process. 37, 362 (1987).
    [CrossRef]
  3. X. Yang, Q. Yu, and S. Fu, Opt. Commun. 274, 286 (2007).
    [CrossRef]
  4. S. Fu, H. Lin, J. Chen, and Q. Yu, Opt. Commun. 272, 73 (2007).
    [CrossRef]
  5. J. C. Estrada, M. Servín, and J. L. Marroquín, Opt. Express 15, 2288 (2007).
    [CrossRef] [PubMed]
  6. A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, Appl. Opt. 41, 2435 (2002).
    [CrossRef] [PubMed]
  7. M. Servín, J. L. Marroquin, and F. J. Cuevas, J. Opt. Soc. Am. A 18, 689 (2001).
    [CrossRef]
  8. C. Quan, C. J. Tay, and L. Chen, Appl. Opt. 44, 2359 (2005).
    [CrossRef] [PubMed]
  9. C. A. Sciammarella and K. Taeeeui, Opt. Eng. 42, 3182 (2003).
    [CrossRef]
  10. B. Strobel, Appl. Opt. 35, 2192 (1996).
    [CrossRef] [PubMed]

2007

X. Yang, Q. Yu, and S. Fu, Opt. Commun. 274, 286 (2007).
[CrossRef]

S. Fu, H. Lin, J. Chen, and Q. Yu, Opt. Commun. 272, 73 (2007).
[CrossRef]

J. C. Estrada, M. Servín, and J. L. Marroquín, Opt. Express 15, 2288 (2007).
[CrossRef] [PubMed]

2005

2003

C. A. Sciammarella and K. Taeeeui, Opt. Eng. 42, 3182 (2003).
[CrossRef]

2002

2001

1996

1987

M. Kass and A. Witkin, Comput. Vis. Graph. Image Process. 37, 362 (1987).
[CrossRef]

Apostol, D.

Asundi, A.

Chen, J.

S. Fu, H. Lin, J. Chen, and Q. Yu, Opt. Commun. 272, 73 (2007).
[CrossRef]

Chen, L.

Cuevas, F. J.

Damian, V.

Dobroiu, A.

Estrada, J. C.

Fu, S.

X. Yang, Q. Yu, and S. Fu, Opt. Commun. 274, 286 (2007).
[CrossRef]

S. Fu, H. Lin, J. Chen, and Q. Yu, Opt. Commun. 272, 73 (2007).
[CrossRef]

Jun, W.

Kass, M.

M. Kass and A. Witkin, Comput. Vis. Graph. Image Process. 37, 362 (1987).
[CrossRef]

Lin, H.

S. Fu, H. Lin, J. Chen, and Q. Yu, Opt. Commun. 272, 73 (2007).
[CrossRef]

Marroquin, J. L.

Marroquín, J. L.

Nascov, V.

Quan, C.

Sciammarella, C. A.

C. A. Sciammarella and K. Taeeeui, Opt. Eng. 42, 3182 (2003).
[CrossRef]

Servín, M.

Strobel, B.

Taeeeui, K.

C. A. Sciammarella and K. Taeeeui, Opt. Eng. 42, 3182 (2003).
[CrossRef]

Tay, C. J.

Witkin, A.

M. Kass and A. Witkin, Comput. Vis. Graph. Image Process. 37, 362 (1987).
[CrossRef]

Yang, X.

X. Yang, Q. Yu, and S. Fu, Opt. Commun. 274, 286 (2007).
[CrossRef]

Yu, Q.

X. Yang, Q. Yu, and S. Fu, Opt. Commun. 274, 286 (2007).
[CrossRef]

S. Fu, H. Lin, J. Chen, and Q. Yu, Opt. Commun. 272, 73 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Isotropic bandpass filters tuned at different frequencies.

Fig. 2
Fig. 2

(a) 300 × 300 test pattern, (b) actual LFD map, (c) obtained LFD map, (d) absolute difference between the actual and obtained LFD maps. The main error comes from the low fringe density regions.

Fig. 3
Fig. 3

(a) 300 × 300 circular test interferogram, (b) actual LFD map, (c) obtained LFD map, (d) absolute difference between the actual and obtained LFD maps.

Fig. 4
Fig. 4

(a) 400 × 400 Fizeau interferogram, (b) obtained LFD map.

Fig. 5
Fig. 5

(a) 500 × 500 image of an annular specular surface, (b) obtained LFD map.

Tables (1)

Tables Icon

Table 1 Root-Mean-Square Errors between the Actual and Obtained LFD Maps Computed from the Fringe Pattern Shown in Fig. 2a and for Different Values of N and σ

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H k ( ρ , θ ) = G ( ρ ρ k )
H k ( ρ , θ ) = exp [ 0.5 ( ρ ρ k σ ) 2 ] .
G k = IFT ( ( FT [ I ] ) · H k ) ,
M k = Re ( G k ) 2 + Im ( G k ) 2 .

Metrics