Abstract

Our experiments on passively phase locking two-dimensional arrays of coupled fiber lasers reveal that the average phase locking level of 25 lasers is low (20%–30%) but can exceed 90% in rare brief events. The average phase locking level was found to decrease for a larger number of lasers in the array and to increase with the connectivity of the array.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman (draft), http://www.stanford.edu/~siegman/Coupled%20Fiber%20Lasers/coupled_fiber_modes.pdf.
  2. A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5662, 482 (2004).
    [CrossRef]
  3. J. E. Rothenberg, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuP3.
  4. E. J. Bochove and S. A. Shakir, IEEE J. Sel. Top. Quantum Electron. 15, 320 (2009).
    [CrossRef]
  5. M. Fridman, M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Opt. Lett. 35, 526 (2010).
    [CrossRef] [PubMed]
  6. T. Y. Fan, IEEE J. Quantum Electron. 11, 567 (2005).
    [CrossRef]
  7. S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
    [CrossRef]
  8. S. J. Augst, T. Y. Fan, and A. Sanchez, Opt. Lett. 29, 474 (2004).
    [CrossRef] [PubMed]
  9. M. Fridman, V. Eckhouse, N. Davidson, and A. A. Friesem, Opt. Lett. 32, 790 (2007).
    [CrossRef] [PubMed]
  10. M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, and N. Davidson, Opt. Lett. 34, 1864 (2009).
    [CrossRef] [PubMed]
  11. C. J. Corcoran and F. Durville, IEEE J. Quantum Electron. 15, 294 (2009).
    [CrossRef]
  12. D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
    [CrossRef] [PubMed]

2010 (1)

2009 (3)

E. J. Bochove and S. A. Shakir, IEEE J. Sel. Top. Quantum Electron. 15, 320 (2009).
[CrossRef]

M. Nixon, M. Fridman, E. Ronen, A. A. Friesem, and N. Davidson, Opt. Lett. 34, 1864 (2009).
[CrossRef] [PubMed]

C. J. Corcoran and F. Durville, IEEE J. Quantum Electron. 15, 294 (2009).
[CrossRef]

2008 (1)

S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
[CrossRef]

2007 (1)

2005 (1)

T. Y. Fan, IEEE J. Quantum Electron. 11, 567 (2005).
[CrossRef]

2004 (2)

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5662, 482 (2004).
[CrossRef]

S. J. Augst, T. Y. Fan, and A. Sanchez, Opt. Lett. 29, 474 (2004).
[CrossRef] [PubMed]

1998 (1)

D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[CrossRef] [PubMed]

Augst, S. J.

Bates, G. M.

S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
[CrossRef]

Bochove, E. J.

E. J. Bochove and S. A. Shakir, IEEE J. Sel. Top. Quantum Electron. 15, 320 (2009).
[CrossRef]

Corcoran, C. J.

C. J. Corcoran and F. Durville, IEEE J. Quantum Electron. 15, 294 (2009).
[CrossRef]

Culver, B.

S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
[CrossRef]

Davidson, N.

Durville, F.

C. J. Corcoran and F. Durville, IEEE J. Quantum Electron. 15, 294 (2009).
[CrossRef]

Eckhouse, V.

Fan, T. Y.

Fridman, M.

Friesem, A. A.

Hedrick, J. W.

S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
[CrossRef]

Matsuo, K.

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5662, 482 (2004).
[CrossRef]

Nelson, B.

S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
[CrossRef]

Nixon, M.

Ronen, E.

Rothenberg, J. E.

J. E. Rothenberg, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuP3.

Sanchez, A.

Shakir, S. A.

E. J. Bochove and S. A. Shakir, IEEE J. Sel. Top. Quantum Electron. 15, 320 (2009).
[CrossRef]

S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
[CrossRef]

Shirakawa, A.

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5662, 482 (2004).
[CrossRef]

Siegman, A. E.

A. E. Siegman (draft), http://www.stanford.edu/~siegman/Coupled%20Fiber%20Lasers/coupled_fiber_modes.pdf.

Starcher, Y.

S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
[CrossRef]

Strogatz, S. H.

D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[CrossRef] [PubMed]

Ueda, K.

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5662, 482 (2004).
[CrossRef]

Watts, D. J.

D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

T. Y. Fan, IEEE J. Quantum Electron. 11, 567 (2005).
[CrossRef]

C. J. Corcoran and F. Durville, IEEE J. Quantum Electron. 15, 294 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. J. Bochove and S. A. Shakir, IEEE J. Sel. Top. Quantum Electron. 15, 320 (2009).
[CrossRef]

Nature (1)

D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (2)

S. A. Shakir, B. Culver, B. Nelson, Y. Starcher, G. M. Bates, and J. W. Hedrick, Proc. SPIE 7070, 70700N (2008).
[CrossRef]

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5662, 482 (2004).
[CrossRef]

Other (2)

J. E. Rothenberg, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuP3.

A. E. Siegman (draft), http://www.stanford.edu/~siegman/Coupled%20Fiber%20Lasers/coupled_fiber_modes.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental configuration for phase locking 25 fiber lasers. OC, output coupler; PR, partial reflector.

Fig. 2
Fig. 2

Connectivities for three different orientations of the coupling mirrors: (a), (d), (g) self-reflection points of each mirror, asterisks; (b), (e), (h) corresponding coupling connections; (c), (f), (i) corresponding coupling connections after rearranging the laser locations to better illustrate the connectivity.

Fig. 3
Fig. 3

Phase locking level as a function of time for 25 fiber lasers. Inset, auto correlation of measurement.

Fig. 4
Fig. 4

Experimental and calculated results of the average and the maximal phase locking levels as a function of number of lasers in the array. Asterisks, maximal phase locking level; crosses, average phase locking level; solid curve, calculated average phase locking level, using the effective reflectivity model. The insets show the far-field intensity distributions corresponding to specific data points.

Fig. 5
Fig. 5

Experimental results of the phase locking level for 25 fiber lasers as a function of the average number of neighbors coupled to each laser.

Metrics