Abstract

A single-beam pulse-shaper-based sonogram technique for spectrometer-free measurement and compensation of laser pulse phase distortions is demonstrated. Phase and amplitude shaping is used to both generate an internal reference and scan the time delay between waveforms corresponding to isolated spectral bands of the input spectrum, thereby directly reconstructing the first derivative of the spectral phase. The accuracy and precision of the approach are evaluated by measuring the group delay introduced by transmission through water or reflection from a broadband dielectric mirror.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino, Frequency Resolved Optical Gating (Springer, 2002).
    [CrossRef]
  2. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  3. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
    [CrossRef]
  4. D. Meshulach, D. Yelin, and Y. Silberberg, J. Opt. Soc. Am. B 15, 1615 (1998).
    [CrossRef]
  5. A. Galler and T. Feurer, Appl. Phys. B 90, 427 (2008).
    [CrossRef]
  6. B. von Vacano, T. Buckup, and M. Motzkus, Opt. Lett. 31, 1154 (2006).
    [CrossRef] [PubMed]
  7. T. K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, Opt. Lett. 19, 1550 (1994).
    [CrossRef] [PubMed]
  8. V. V. Lozovoy, I. Pastirk, and M. Dantus, Opt. Lett. 29, 775 (2004).
    [CrossRef] [PubMed]
  9. Y. Coello, B. W. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, Appl. Opt. 46, 8394 (2007).
    [CrossRef] [PubMed]
  10. R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, Opt. Lett. 12, 483 (1987).
    [CrossRef] [PubMed]
  11. J. L. A. Chilla and O. E. Martinez, Opt. Lett. 16, 39 (1991).
    [CrossRef] [PubMed]
  12. J. P. Foing, J. P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
    [CrossRef]
  13. J. K. Rhee, T. S. Sosnowski, A. C. Tien, and T. B. Norris, J. Opt. Soc. Am. B 13, 1780 (1996).
    [CrossRef]
  14. N. Matuschek, F. X. Kartner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998).
    [CrossRef]
  15. D. Pestov, V. V. Lozovoy, and M. Dantus, Opt. Express 17, 14351 (2009).
    [CrossRef] [PubMed]

2009

2008

A. Galler and T. Feurer, Appl. Phys. B 90, 427 (2008).
[CrossRef]

2007

2006

2004

1998

1997

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
[CrossRef]

1996

1994

1992

J. P. Foing, J. P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

1991

1987

Arns, J. A.

Baumert, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
[CrossRef]

Becker, P. C.

Brixner, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
[CrossRef]

Buckup, T.

Chilla, J. L. A.

Coello, Y.

Colburn, W. S.

Cruz, C. H. B.

Dantus, M.

Feurer, T.

A. Galler and T. Feurer, Appl. Phys. B 90, 427 (2008).
[CrossRef]

Foing, J. P.

J. P. Foing, J. P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

Fork, R. L.

Galler, A.

A. Galler and T. Feurer, Appl. Phys. B 90, 427 (2008).
[CrossRef]

Gerber, G.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
[CrossRef]

Iaconis, C.

Joffre, M.

J. P. Foing, J. P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

Kartner, F. X.

N. Matuschek, F. X. Kartner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998).
[CrossRef]

Keller, U.

N. Matuschek, F. X. Kartner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998).
[CrossRef]

Likforman, J. P.

J. P. Foing, J. P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

Lozovoy, V. V.

Martinez, O. E.

Matuschek, N.

N. Matuschek, F. X. Kartner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998).
[CrossRef]

Meshulach, D.

Migus, A.

J. P. Foing, J. P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

Miller, T. L.

Motzkus, M.

Norris, T. B.

Pastirk, I.

Pestov, D.

Rhee, J. K.

Rhee, T. K.

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
[CrossRef]

Shank, C. V.

Silberberg, Y.

Sosnowski, T. S.

Strehle, M.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
[CrossRef]

Tien, A. C.

Trebino, R.

R. Trebino, Frequency Resolved Optical Gating (Springer, 2002).
[CrossRef]

von Vacano, B.

Walmsley, I. A.

Xu, B. W.

Yelin, D.

Appl. Opt.

Appl. Phys. B

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
[CrossRef]

A. Galler and T. Feurer, Appl. Phys. B 90, 427 (2008).
[CrossRef]

IEEE J. Quantum Electron.

J. P. Foing, J. P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Matuschek, F. X. Kartner, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

R. Trebino, Frequency Resolved Optical Gating (Springer, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Principle of the MIPS-S technique. Amplitude shaping is used to select two narrow bands of width δ within the input laser spectrum of width Δ ( δ Δ ) . The corresponding waveforms are cross correlated at the target location by using phase shaping, and the relative group delay between the two selected spectral bands is measured. (b) Experimental setup layout. G, grating; SM, spherical mirror ( f = 500 mm ) , SLM, spatial light modulator; M1-2, steering mirrors, BDM, broadband dielectric mirror; S, sample; FM, focusing mirror ( f = 250 mm ) ; NL, nonlinear crystal; F, filter; Det/Spec, spectrometer.

Fig. 2
Fig. 2

(a) Normalized XC data acquired during the first iteration of MIIPS-S. The T-slits for both spectral bands, fixed and scanned, are 31  pixel wide, except at the edges. The circles show the positions of XC maxima. The black outline marks the half-maximum level for the normalized XC traces. The insets are examples of obtained XC traces. (b) SHG spectra, recorded for zero phase on the SLM and selected compensation masks after MIIPS-S. The inset shows the dependence of spectrally integrated SHG signal on the number of measurement–compensation iterations. (c) Typical laser spectrum and φ c ( ω ) profile obtained via MIIPS-S. The panel at the bottom highlights the precision error for the time delay, estimated from three MIIPS-S measurements. (d) The top panel shows the compensation phase obtained by direct integration of φ c ( ω ) from (c). The center panel gives the estimated phase error, accumulated through the integration of experimental φ c ( ω ) data. The bottom panel highlights the incremental phase uncertainty Δ φ over a single T-slit. The last quantity is a product of φ c ( ω ) error and the T-slit spectral bandwidth δ.

Fig. 3
Fig. 3

MIIPS-S dispersion measurements on distilled water for 10 and 30 mm nominal path lengths. Every scan consists of four measurement–compensation iterations, starting from the phase compensation mask obtained with an empty cuvette. Other scan parameters are the same as in Fig. 2. The group delay is taken to be zero at 805.8 nm (SLM pixel 319).

Fig. 4
Fig. 4

Measurement and compensation of phase distortions introduced by a BDM. (a) Experimental and simulated SHG spectra produced by initially TL pulses after a single bounce off the BDM set at 45° and 46° incidence angles. The experimental SHG spectrum for a TL pulse is obtained after MIIPS-S compensation of phase distortions for the 45° incident beam. (b) Group-delay spectra measured for the two incidence angles. The black solid curve maps the laser spectrum. (c) Interferometric XC of the pulse after the BDM for 45° incidence. Inset, interferometric cross correlation of the pulse after compensation of phase distortions from the BDM.

Metrics