Abstract

We report a pulse reshaping approach to suppress the harmful spike in fiber amplifiers. The approach is based on the nonlinear polarization rotation induced by the optical Kerr effect along the fiber. The feasibility and optimization of the pulse reshaping mechanism is analyzed theoretically and experimentally. An experiment is set up, and effective spike removal with low insertion loss of 0.5dB is realized.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-Y. Cheng, K. Hou, A. Galvanauskas, D. Engin, R. Changkakoti, and P. Mamidipudi, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThAA3.
  2. M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, Opt. Lett. 30, 358 (2005).
    [CrossRef] [PubMed]
  3. A. Liu, Opt. Express 15, 977 (2007).
    [CrossRef] [PubMed]
  4. Y. J. Zhang, B. Q. Yao, Y. L. Ju, and Y. Z. Wang, Opt. Express 13, 1085 (2005).
    [CrossRef] [PubMed]
  5. S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
    [CrossRef]
  6. Y. Wang and H. Po, J. Lightwave Technol. 21, 2262 (2003).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2001).
  8. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

2007

2005

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, Opt. Lett. 30, 358 (2005).
[CrossRef] [PubMed]

Y. J. Zhang, B. Q. Yao, Y. L. Ju, and Y. Z. Wang, Opt. Express 13, 1085 (2005).
[CrossRef] [PubMed]

2003

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2001).

Chang, Y. C.

Changkakoti, R.

M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, Opt. Lett. 30, 358 (2005).
[CrossRef] [PubMed]

M.-Y. Cheng, K. Hou, A. Galvanauskas, D. Engin, R. Changkakoti, and P. Mamidipudi, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThAA3.

Cheng, M. Y.

Cheng, M.-Y.

M.-Y. Cheng, K. Hou, A. Galvanauskas, D. Engin, R. Changkakoti, and P. Mamidipudi, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThAA3.

Engin, D.

M.-Y. Cheng, K. Hou, A. Galvanauskas, D. Engin, R. Changkakoti, and P. Mamidipudi, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThAA3.

Farroni, J.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Galvanauskas, A.

M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, Opt. Lett. 30, 358 (2005).
[CrossRef] [PubMed]

M.-Y. Cheng, K. Hou, A. Galvanauskas, D. Engin, R. Changkakoti, and P. Mamidipudi, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThAA3.

Gatchell, P.

Hagan, D. J.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Hou, K.

M.-Y. Cheng, K. Hou, A. Galvanauskas, D. Engin, R. Changkakoti, and P. Mamidipudi, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThAA3.

Ju, Y. L.

Liu, A.

Mamidipudi, P.

M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, Opt. Lett. 30, 358 (2005).
[CrossRef] [PubMed]

M.-Y. Cheng, K. Hou, A. Galvanauskas, D. Engin, R. Changkakoti, and P. Mamidipudi, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThAA3.

McDonald, F. C.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

McIntosh, B.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Po, H.

Soileau, M. J.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Tankala, K.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Torruellas, W.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Van Stryland, E. W.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Villanger, A.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Wang, Y.

Wang, Y. Z.

Webster, S.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Yao, B. Q.

Zhang, Y. J.

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Torruellas, J. Farroni, and K. Tankala, Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Other

M.-Y. Cheng, K. Hou, A. Galvanauskas, D. Engin, R. Changkakoti, and P. Mamidipudi, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThAA3.

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2001).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

θ 1 ( a b , δ ) and θ 2 ( a b , δ ) versus different polarization parameters a b and δ.

Fig. 2
Fig. 2

T ( θ ) curves of the light with the polarization state corresponding to intersection points a, b, c, and d.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Pulse profiles with different orientations of the half-wave plate (all fiber is coiled on a cylinder).

Fig. 5
Fig. 5

Pulse profiles with different orientations of the half-wave plate (with 2  m of straight fiber).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( a b exp ( i δ ) ) ,
E = ( cos 2 θ sin 2 θ sin 2 θ cos 2 θ ) ( a b exp ( i δ ) ) = ( A T A R exp ( i Δ ) ) ,
T ( θ ) = A T 2 A R 2 + A T 2 = ( a b ) 2 cos 2 2 θ + sin 2 2 θ + 2 ( a b ) sin 2 θ cos 2 θ cos δ ( a b ) 2 + 1 .
θ 1 ( a b , δ ) = 1 4 arctan ( 2 cos δ a b b a ) ,
θ 2 ( a b , δ ) = θ 1 ( a b , δ ) + π 4.
δ = δ L + δ NL = 2 π B m L λ + γ L ( P x P y ) 3 = 2 π B m L × 10 6 + 0.57 × 10 4 π L ( P x P y ) ,
a b = P x P y ,

Metrics