Abstract

We experimentally demonstrate an optical parametric oscillator, whose signal pumps another difference-frequency generation process. Engineered idler frequency coincidence of both processes in a single quasi periodic crystal improves pump-to-idler slope efficiency by 52.8%, from 15.25% to 23.3%, and pump-to-idler conversion efficiency (at an average pump power of 1.2 W) by 16.6%, from 12.5% to 14.58%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  2. M. E. Dearborn, K. Koch, and G. T. Moore, Opt. Lett. 23, 759 (1998).
    [CrossRef]
  3. W. Zhang, Opt. Commun. 274, 451 (2007).
    [CrossRef]
  4. K. A. Tillman and D. T. Reid, J. Opt. Soc. Am. B 21, 1551 (2004).
    [CrossRef]
  5. F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
    [CrossRef]
  6. J. W. Haus, A. Pandey, and P. E. Powers, Opt. Commun. 269, 378 (2007).
    [CrossRef]
  7. J. M. Fraser and C. Ventalon, Appl. Opt. 45, 4109 (2006).
    [CrossRef] [PubMed]
  8. T. Kartaloğlu, Z. G. Figen, and O. Aytür, J. Opt. Soc. Am. B 20, 343 (2003).
    [CrossRef]
  9. H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, J. Phys. Condens. Matter 16, 8465 (2004).
    [CrossRef]
  10. R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
    [CrossRef]
  11. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
    [CrossRef]
  12. O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
    [CrossRef]
  13. R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
    [CrossRef] [PubMed]
  14. A. V. Smith and R. J. Gehr, J. Opt. Soc. Am. B 16, 609 (1999).
    [CrossRef]

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

2007 (3)

W. Zhang, Opt. Commun. 274, 451 (2007).
[CrossRef]

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

J. W. Haus, A. Pandey, and P. E. Powers, Opt. Commun. 269, 378 (2007).
[CrossRef]

2006 (1)

2005 (1)

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

2004 (2)

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, J. Phys. Condens. Matter 16, 8465 (2004).
[CrossRef]

K. A. Tillman and D. T. Reid, J. Opt. Soc. Am. B 21, 1551 (2004).
[CrossRef]

2003 (1)

1999 (1)

1998 (1)

1997 (1)

1995 (1)

1964 (1)

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Aytür, O.

Bahabad, A.

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Bosenberg, W. R.

Byer, R. L.

Dearborn, M. E.

Eckardt, R. C.

Fejer, M. M.

Figen, Z. G.

Fraser, J. M.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Gehr, R. J.

Guo, H. C.

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, J. Phys. Condens. Matter 16, 8465 (2004).
[CrossRef]

Haus, J. W.

J. W. Haus, A. Pandey, and P. E. Powers, Opt. Commun. 269, 378 (2007).
[CrossRef]

Ito, R.

Ji, F.

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

Kartaloglu, T.

Kitamoto, A.

Koch, K.

Kondo, T.

Li, E.

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

Lifshitz, R.

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Miller, R. C.

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Moore, G. T.

Myers, L. E.

Pandey, A.

J. W. Haus, A. Pandey, and P. E. Powers, Opt. Commun. 269, 378 (2007).
[CrossRef]

Powers, P. E.

J. W. Haus, A. Pandey, and P. E. Powers, Opt. Commun. 269, 378 (2007).
[CrossRef]

Qin, Y. Q.

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, J. Phys. Condens. Matter 16, 8465 (2004).
[CrossRef]

Reid, D. T.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Shen, Z. X.

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, J. Phys. Condens. Matter 16, 8465 (2004).
[CrossRef]

Shirane, M.

Shoji, I.

Smith, A. V.

Tang, S. H.

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, J. Phys. Condens. Matter 16, 8465 (2004).
[CrossRef]

Tillman, K. A.

Ventalon, C.

Wang, P.

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

Yao, J.

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

Zhang, B.

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

Zhang, T.

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

Zhang, W.

W. Zhang, Opt. Commun. 274, 451 (2007).
[CrossRef]

Zhao, P.

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

Zheng, F.

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

J. Opt. A (1)

F. Ji, J. Yao, F. Zheng, E. Li, T. Zhang, P. Zhao, P. Wang, and B. Zhang, J. Opt. A 9, 797 (2007).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. Phys. Condens. Matter (1)

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, J. Phys. Condens. Matter 16, 8465 (2004).
[CrossRef]

Opt. Commun. (2)

J. W. Haus, A. Pandey, and P. E. Powers, Opt. Commun. 269, 378 (2007).
[CrossRef]

W. Zhang, Opt. Commun. 274, 451 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fourier transform of the quasi-periodic lattice. The first order Fourier coefficients are G OPO = 0.3996 and G DFG = 0.3994 . The inset shows part of the quasi-periodic lattice, composed of building blocks of lengths l a = 16.27 μ m and l b = 14.30 μ m .

Fig. 2
Fig. 2

(a) Normalized efficiency of OPO (solid line with blue stars) and DFG (dashed line with black crosses) processes versus idler wavelength at different crystal temperatures. (b) Locus of processes peaks in the crystal temperature-idler wavelength plane. The theoretical curves have been downshifted by 37.7 nm to account for Sellmeier and temperature inaccuracies.

Fig. 3
Fig. 3

Experimentally measured average idler output power of periodic OPO and quasiperiodic OPO. Inset, simulation results for the same configurations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d A p d z = α p 2 A p ( z ) + κ OPO , p ( z ) A s ( z ) A i ( z ) e i Δ k OPO z ,
d A s d z = α s 2 A s ( z ) + κ OPO , s ( z ) A p ( z ) A i ( z ) e i Δ k OPO z + κ DFG , s ( z ) A s 2 ( z ) A i ( z ) e i Δ k DFG z ,
d A i d z = α i 2 A i ( z ) + κ OPO , i ( z ) A p ( z ) A s ( z ) e i Δ k OPO z + κ DFG , i ( z ) A s ( z ) A s 2 ( z ) e i Δ k DFG z ,
d A s 2 d z = α s 2 2 A s 2 ( z ) + κ DFG , s 2 ( z ) A s ( z ) A i ( z ) e i Δ k DFG z ,

Metrics