Abstract

In laser Compton scattering systems, the limitation to higher average brightness is the low repetition rate of high-power lasers. We propose and demonstrate for the first time, as far as we know, a simple method by which x-ray yield could be enhanced nearly 2 orders of magnitude per second. The method, utilizing cholesteric liquid crystals as the entrance mirror of the laser storage cavity, can be used not only for storing femtosecond laser pulses with a peak power of several terawatts, but also to make high coupling efficiency and energy utilization efficiency accessible.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Zh. Huang and R. D. Ruth, Phys. Rev. Lett. 80, 976 (1998).
    [CrossRef]
  2. P. C. Yu and W. H. Huang, Nucl. Instrum. Methods Phys. Res. 592, 1 (2008).
    [CrossRef]
  3. K. Sakaue, M. Washio, and S. Araki, in 10th European Particle Accelerator Conference (2006), p. 3155.
  4. K. Sakaue, M. Washio, and S. Araki, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1034.
    [CrossRef]
  5. I. Jovanovic and S. G. Anderson, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1251.
    [CrossRef]
  6. C.-L. Ting and T.-H. Lin, Opt. Express 14, 5594 (2006).
    [CrossRef] [PubMed]
  7. W. D. St. John and W. J. Fritz, Phys. Rev. E 51, 1191 (1995).
    [CrossRef]
  8. D.-K. Yang and X.-D. Mi, Appl. Phys. 33, 672 (2000).
  9. X.-f. Wei, X.-j. Huang, and H. Peng, J. Phys. Conf. Ser. 112, 032010 (2008).
    [CrossRef]
  10. H.-s. Peng, X.-j. Huang, and Q.-h. Zhu, Laser Phys. 16, 244 (2007).
    [CrossRef]
  11. Y. Zhou, Y.-h. Huang, and S.-T. Wu, Opt. Express 14, 3906 (2006).
    [CrossRef] [PubMed]

2008

X.-f. Wei, X.-j. Huang, and H. Peng, J. Phys. Conf. Ser. 112, 032010 (2008).
[CrossRef]

P. C. Yu and W. H. Huang, Nucl. Instrum. Methods Phys. Res. 592, 1 (2008).
[CrossRef]

2007

H.-s. Peng, X.-j. Huang, and Q.-h. Zhu, Laser Phys. 16, 244 (2007).
[CrossRef]

2006

2000

D.-K. Yang and X.-D. Mi, Appl. Phys. 33, 672 (2000).

1998

Zh. Huang and R. D. Ruth, Phys. Rev. Lett. 80, 976 (1998).
[CrossRef]

1995

W. D. St. John and W. J. Fritz, Phys. Rev. E 51, 1191 (1995).
[CrossRef]

Anderson, S. G.

I. Jovanovic and S. G. Anderson, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1251.
[CrossRef]

Araki, S.

K. Sakaue, M. Washio, and S. Araki, in 10th European Particle Accelerator Conference (2006), p. 3155.

K. Sakaue, M. Washio, and S. Araki, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1034.
[CrossRef]

Fritz, W. J.

W. D. St. John and W. J. Fritz, Phys. Rev. E 51, 1191 (1995).
[CrossRef]

Huang, W. H.

P. C. Yu and W. H. Huang, Nucl. Instrum. Methods Phys. Res. 592, 1 (2008).
[CrossRef]

Huang, X.-j.

X.-f. Wei, X.-j. Huang, and H. Peng, J. Phys. Conf. Ser. 112, 032010 (2008).
[CrossRef]

H.-s. Peng, X.-j. Huang, and Q.-h. Zhu, Laser Phys. 16, 244 (2007).
[CrossRef]

Huang, Y.-h.

Huang, Zh.

Zh. Huang and R. D. Ruth, Phys. Rev. Lett. 80, 976 (1998).
[CrossRef]

John, W. D. St.

W. D. St. John and W. J. Fritz, Phys. Rev. E 51, 1191 (1995).
[CrossRef]

Jovanovic, I.

I. Jovanovic and S. G. Anderson, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1251.
[CrossRef]

Lin, T.-H.

Mi, X.-D.

D.-K. Yang and X.-D. Mi, Appl. Phys. 33, 672 (2000).

Peng, H.

X.-f. Wei, X.-j. Huang, and H. Peng, J. Phys. Conf. Ser. 112, 032010 (2008).
[CrossRef]

Peng, H.-s.

H.-s. Peng, X.-j. Huang, and Q.-h. Zhu, Laser Phys. 16, 244 (2007).
[CrossRef]

Ruth, R. D.

Zh. Huang and R. D. Ruth, Phys. Rev. Lett. 80, 976 (1998).
[CrossRef]

Sakaue, K.

K. Sakaue, M. Washio, and S. Araki, in 10th European Particle Accelerator Conference (2006), p. 3155.

K. Sakaue, M. Washio, and S. Araki, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1034.
[CrossRef]

Ting, C.-L.

Washio, M.

K. Sakaue, M. Washio, and S. Araki, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1034.
[CrossRef]

K. Sakaue, M. Washio, and S. Araki, in 10th European Particle Accelerator Conference (2006), p. 3155.

Wei, X.-f.

X.-f. Wei, X.-j. Huang, and H. Peng, J. Phys. Conf. Ser. 112, 032010 (2008).
[CrossRef]

Wu, S.-T.

Yang, D.-K.

D.-K. Yang and X.-D. Mi, Appl. Phys. 33, 672 (2000).

Yu, P. C.

P. C. Yu and W. H. Huang, Nucl. Instrum. Methods Phys. Res. 592, 1 (2008).
[CrossRef]

Zhou, Y.

Zhu, Q.-h.

H.-s. Peng, X.-j. Huang, and Q.-h. Zhu, Laser Phys. 16, 244 (2007).
[CrossRef]

Appl. Phys.

D.-K. Yang and X.-D. Mi, Appl. Phys. 33, 672 (2000).

J. Phys. Conf. Ser.

X.-f. Wei, X.-j. Huang, and H. Peng, J. Phys. Conf. Ser. 112, 032010 (2008).
[CrossRef]

Laser Phys.

H.-s. Peng, X.-j. Huang, and Q.-h. Zhu, Laser Phys. 16, 244 (2007).
[CrossRef]

Nucl. Instrum. Methods Phys. Res.

P. C. Yu and W. H. Huang, Nucl. Instrum. Methods Phys. Res. 592, 1 (2008).
[CrossRef]

Opt. Express

Phys. Rev. E

W. D. St. John and W. J. Fritz, Phys. Rev. E 51, 1191 (1995).
[CrossRef]

Phys. Rev. Lett.

Zh. Huang and R. D. Ruth, Phys. Rev. Lett. 80, 976 (1998).
[CrossRef]

Other

K. Sakaue, M. Washio, and S. Araki, in 10th European Particle Accelerator Conference (2006), p. 3155.

K. Sakaue, M. Washio, and S. Araki, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1034.
[CrossRef]

I. Jovanovic and S. G. Anderson, in Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC07) (IEEE, 2007), p. 1251.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reflection and transmission spectra of the right-handed Ch-LC with (a) right-handed circularly polarized incident light, (b) left-handed circularly polarized incident light, (c) linearly polarized incident light.

Fig. 2
Fig. 2

(a) Experimental setup of a fs laser storage cavity; (b) Schematic of experimental Ch-LC.

Fig. 3
Fig. 3

Energy of leaked signal versus time. The temporal pulse separation of about 2 ns corresponds to the round-trip time of the cavity.

Fig. 4
Fig. 4

Transmission spectra of the experimental Ch-LC with (a) linearly polarized incident beam and (b) right-handed circularly polarized light.

Fig. 5
Fig. 5

Numerical calculation of storage cavity performance, assuming a total loss of 1.1% per round trip, (a) pulse energy in the cavity versus number of round trips. The total predicted cavity enhancement is 84.3. (b) Nonlinear phase accumulation versus the number of roundtrips.

Fig. 6
Fig. 6

“Z” form storage cavity design for Compton scattering. With reflectivity of 99% at the Ch-LC and 99.9% at other mirrors, assuming a loss of 1.5% per roundtrip, the “Z” form storage cavity enhancement reaches 64.4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( 1 0 0 1 ) .

Metrics