Abstract

The impact of self-phase modulation on coherently combined ultrafast fiber-based chirped-pulse amplifiers (CPA) is studied. We point out that, in nonlinear CPA regime, the nonlinear phase accumulated in each fiber amplifier can significantly differ from one to another, resulting in serious efficiency degradation of coherent combining. A test bench based on picosecond pulses, and a single fiber amplifier is developed to experimentally demonstrate the effect. The effects that can lead to this nonlinear phase deviation and the induced system limitations are discussed and analyzed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Lett.  35, 94 (2010).
    [CrossRef] [PubMed]
  2. C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol.  12, 1784 (2001).
    [CrossRef]
  3. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron.  11, 567 (2005).
    [CrossRef]
  4. C. Labaune, D. Hulin, A. Galvanauskas, and G. A. Mourou, Opt. Commun.  281, 4075 (2008).
    [CrossRef]
  5. E. C. Cheung, M. Weber and R. R. Rice, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2008), paper WA2.
  6. M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, IEEE J. Quantum Electron.  36, 1333 (2000).
    [CrossRef]
  7. M. Hanna, D. Papadopoulos, F. Druon, and P. Georges, Opt. Express  17, 10835 (2009).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (1)

C. Labaune, D. Hulin, A. Galvanauskas, and G. A. Mourou, Opt. Commun.  281, 4075 (2008).
[CrossRef]

2005 (1)

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron.  11, 567 (2005).
[CrossRef]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol.  12, 1784 (2001).
[CrossRef]

2000 (1)

M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, IEEE J. Quantum Electron.  36, 1333 (2000).
[CrossRef]

Andersen, T. V.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol.  12, 1784 (2001).
[CrossRef]

Cheung, E. C.

E. C. Cheung, M. Weber and R. R. Rice, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2008), paper WA2.

Druon, F.

Eidam, T.

Fan, T. Y.

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron.  11, 567 (2005).
[CrossRef]

Gabler, T.

Galvanauskas, A.

C. Labaune, D. Hulin, A. Galvanauskas, and G. A. Mourou, Opt. Commun.  281, 4075 (2008).
[CrossRef]

Georges, P.

Goedgebuer, J. -P.

M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, IEEE J. Quantum Electron.  36, 1333 (2000).
[CrossRef]

Hanf, S.

Hanna, M.

M. Hanna, D. Papadopoulos, F. Druon, and P. Georges, Opt. Express  17, 10835 (2009).
[CrossRef] [PubMed]

M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, IEEE J. Quantum Electron.  36, 1333 (2000).
[CrossRef]

Hulin, D.

C. Labaune, D. Hulin, A. Galvanauskas, and G. A. Mourou, Opt. Commun.  281, 4075 (2008).
[CrossRef]

Labaune, C.

C. Labaune, D. Hulin, A. Galvanauskas, and G. A. Mourou, Opt. Commun.  281, 4075 (2008).
[CrossRef]

Limpert, J.

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol.  12, 1784 (2001).
[CrossRef]

Mourou, G. A.

C. Labaune, D. Hulin, A. Galvanauskas, and G. A. Mourou, Opt. Commun.  281, 4075 (2008).
[CrossRef]

Papadopoulos, D.

Porte, H.

M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, IEEE J. Quantum Electron.  36, 1333 (2000).
[CrossRef]

Rhodes, W. T.

M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, IEEE J. Quantum Electron.  36, 1333 (2000).
[CrossRef]

Rice, R. R.

E. C. Cheung, M. Weber and R. R. Rice, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2008), paper WA2.

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol.  12, 1784 (2001).
[CrossRef]

Schreiber, T.

Seise, E.

Tünnermann, A.

Weber, M.

E. C. Cheung, M. Weber and R. R. Rice, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2008), paper WA2.

Wirth, C.

IEEE J. Quantum Electron. (1)

M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, IEEE J. Quantum Electron.  36, 1333 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron.  11, 567 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, Meas. Sci. Technol.  12, 1784 (2001).
[CrossRef]

Opt. Commun. (1)

C. Labaune, D. Hulin, A. Galvanauskas, and G. A. Mourou, Opt. Commun.  281, 4075 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

E. C. Cheung, M. Weber and R. R. Rice, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2008), paper WA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experiment setup.

Fig. 2
Fig. 2

Recorded interference fringes at the output.

Fig. 3
Fig. 3

Measured fringe visibility evolutions, as a function of average output signal power, before and after the adjustment of fiber input end.

Fig. 4
Fig. 4

Intensity and phase of the two compressed pulses: the peak values of nonlinear phase before compression are 20 and 21 rad.

Fig. 5
Fig. 5

Simulated sensitivities of relative SPM deviation to the relative input signal and pump power deviations ( η s and η p , respectively), as a function of average input signal power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ N L ϕ ¯ N L = η s Δ P s 0 P ¯ s 0 + η p Δ P p 0 P ¯ p 0 ,
η s = P s 0   ln   ϕ N L P s 0 , η p = P p 0   ln   ϕ N L P p 0

Metrics