Abstract

This Letter describes a compact optical path scanner for decoding fiber-optic interferometers. The active component of the scanner is a segment of liquid sealed in a fused silica hollow fiber. When the volume of the liquid is changed by an attached thermoelectric cooler, one end facet of the liquid moves along the hollow fiber, and the optical path of the light reflected by the end facet is thus tuned, with a continuous tuning range of a few hundred micrometers. We used the optical path scanner for demodulating the optical path difference of a Fabry–Perot interferometric sensor, and the resulted decoding accuracy is 14 nm over a measurement range of 50μm. The compact optical path scanner has the advantages of compact size, high precision, flexible scanning range, low cost, insensitivity to vibration, and ease of fabrication.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wei, Y. Han, Y. Li, H. Tsai, and H. Xiao, Opt. Express  16, 5764 (2008).
    [CrossRef] [PubMed]
  2. A. Koch and R. Ulrich, Sens. Actuators, A  25–27, 201 (1991).
  3. B. Yu, A. Wang, G. Pickrell, and J. Xu, Opt. Lett.  30, 1452 (2005).
    [CrossRef] [PubMed]
  4. Y. J. Rao and A. D. Jackson, Electron. Lett.  30, 1440 (1994).
    [CrossRef]
  5. R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
    [CrossRef]
  6. C. Belleville and G. Duplain, Opt. Lett.  18, 78 (1993).
    [CrossRef] [PubMed]
  7. B. Yu, D. W. Kim, J. Deng, H. Xiao, and A. Wang, Appl. Opt.  42, 3241 (2003).
    [CrossRef] [PubMed]
  8. S. Chen, A. W. Palmer, K. T. V. Grattan, and B. T. Meggitt, Electron. Lett.  28, 553 (1992).
    [CrossRef]
  9. F. Shen and A. Wang, Appl. Opt.  44, 5206 (2005).
    [CrossRef] [PubMed]

2008 (1)

2005 (2)

2003 (1)

1996 (1)

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
[CrossRef]

1994 (1)

Y. J. Rao and A. D. Jackson, Electron. Lett.  30, 1440 (1994).
[CrossRef]

1993 (1)

1992 (1)

S. Chen, A. W. Palmer, K. T. V. Grattan, and B. T. Meggitt, Electron. Lett.  28, 553 (1992).
[CrossRef]

1991 (1)

A. Koch and R. Ulrich, Sens. Actuators, A  25–27, 201 (1991).

Belleville, C.

Chen, S.

S. Chen, A. W. Palmer, K. T. V. Grattan, and B. T. Meggitt, Electron. Lett.  28, 553 (1992).
[CrossRef]

Deng, J.

Duplain, G.

Grattan, K. T. V.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
[CrossRef]

S. Chen, A. W. Palmer, K. T. V. Grattan, and B. T. Meggitt, Electron. Lett.  28, 553 (1992).
[CrossRef]

Han, Y.

Jackson, A. D.

Y. J. Rao and A. D. Jackson, Electron. Lett.  30, 1440 (1994).
[CrossRef]

Jiang, X.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
[CrossRef]

Kim, D. W.

Koch, A.

A. Koch and R. Ulrich, Sens. Actuators, A  25–27, 201 (1991).

Li, Y.

Marshall, R. H.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
[CrossRef]

Meggitt, B. T.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
[CrossRef]

S. Chen, A. W. Palmer, K. T. V. Grattan, and B. T. Meggitt, Electron. Lett.  28, 553 (1992).
[CrossRef]

Ning, Y. N.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
[CrossRef]

Palmer, A. W.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
[CrossRef]

S. Chen, A. W. Palmer, K. T. V. Grattan, and B. T. Meggitt, Electron. Lett.  28, 553 (1992).
[CrossRef]

Pickrell, G.

Rao, Y. J.

Y. J. Rao and A. D. Jackson, Electron. Lett.  30, 1440 (1994).
[CrossRef]

Shen, F.

Tsai, H.

Ulrich, R.

A. Koch and R. Ulrich, Sens. Actuators, A  25–27, 201 (1991).

Wang, A.

Wei, T.

Xiao, H.

Xu, J.

Yu, B.

Appl. Opt. (2)

Electron. Lett. (2)

Y. J. Rao and A. D. Jackson, Electron. Lett.  30, 1440 (1994).
[CrossRef]

S. Chen, A. W. Palmer, K. T. V. Grattan, and B. T. Meggitt, Electron. Lett.  28, 553 (1992).
[CrossRef]

J. Lightwave Technol. (1)

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightwave Technol.  14, 397 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Sens. Actuators, A (1)

A. Koch and R. Ulrich, Sens. Actuators, A  25–27, 201 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of a compact optical path scanner.

Fig. 2
Fig. 2

Schematic diagram of the COPS-WLI system.

Fig. 3
Fig. 3

The processing of the photodetector output: (a) a typical output signal of the photodetector in sequence number domain, (b) the result of signal after removing the low-frequency shift, (c) mapping of sequence number and OPD, and (d) the interference fringe in OPD domain.

Fig. 4
Fig. 4

Comparison of the measured OPD between COPS-WLI and CTS.

Fig. 5
Fig. 5

Deviation of OPD measured of system.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ L = ( α l L b α s L c ) Δ T ,
f ( λ ) = 1 ( 2 π ) 1 / 2 Δ λ / ( 8   ln   2 ) 1 / 2 exp [ ( λ λ 0 ) 2 / ( Δ λ 2 / 4   ln   2 ) ]
l c = λ 0 2 / Δ λ ,
V = Q 0 f ( λ ) cos 2 π l λ d λ ,

Metrics