Abstract

We demonstrate a low-cost, high-sensitivity, all-fiber microcantilever sensor, a fiber-to-tip microcantilever sensor (FTMS). In this sensor, a nanosize fiber tip serves as both microcantilever and miniaturized light probe. Subnanometer displacements of the fiber-tip cantilever are expected to be registered by measuring the light intensity that it receives from a collinearly aligned single-mode fiber (SMF). We found that the cantilever-displacement curve is defined by the Gaussian profile of the fundamental mode, HE11, guided in the aligned SMF. An FTMS vibration sensor has been implemented as an example of the technique, exhibiting an estimated resolution of 2 Å. The FTMS should open new ways of inexpensive fiber-optic microcantilever sensing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
    [CrossRef]
  2. P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
    [CrossRef]
  3. S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009).
    [CrossRef] [PubMed]
  4. Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, Opt. Lett. 32, 594 (2007).
    [CrossRef] [PubMed]
  5. K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, J. Lightwave Technol. 24, 2132 (2006).
    [CrossRef]
  6. M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
    [CrossRef]
  7. D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
    [CrossRef]
  8. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
    [CrossRef]
  9. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]
  10. G. A. Valaskovic, M. Holton, and G. H. Morrison, Appl. Opt. 34, 1215 (1995).
    [CrossRef] [PubMed]

2009 (1)

S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, J. Lightwave Technol. 24, 2132 (2006).
[CrossRef]

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
[CrossRef]

2005 (1)

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
[CrossRef]

2004 (1)

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
[CrossRef]

2003 (1)

2002 (1)

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
[CrossRef]

1997 (1)

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
[CrossRef]

1995 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
[CrossRef]

Almeida, V. R.

Busto, V. J. C.

Cerami, L. R.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
[CrossRef]

Chen, D. P.

Datskos, P. G.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
[CrossRef]

Deladi, S.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
[CrossRef]

Dominguez, C.

Elliott, S. R.

S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009).
[CrossRef] [PubMed]

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
[CrossRef]

Elwenspoek, M. C.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
[CrossRef]

Gadgil, V. J.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
[CrossRef]

Gattass, R. R.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
[CrossRef]

Guo, Z. Y.

Holton, M.

Huang, J. Z.

S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009).
[CrossRef] [PubMed]

Iannuzzi, D.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
[CrossRef]

Kamata, M.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
[CrossRef]

Kelling, S.

S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009).
[CrossRef] [PubMed]

Krecmer, P.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
[CrossRef]

Lavrik, N. V.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
[CrossRef]

Lechuga, L. M.

Lipson, M.

Mazur, E.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
[CrossRef]

Miao, Z. Y.

Morrison, G. H.

Moulin, A. M.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
[CrossRef]

Obara, M.

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
[CrossRef]

Ostanin, V. P.

S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009).
[CrossRef] [PubMed]

Panepucci, R. R.

Paoloni, F.

S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009).
[CrossRef] [PubMed]

Plaza, J. A.

Rayment, T.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
[CrossRef]

Sanders, R. G. P.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
[CrossRef]

Schreuders, H.

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
[CrossRef]

Sepaniak, M. J.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
[CrossRef]

Stephenson, R. J.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
[CrossRef]

Valaskovic, G. A.

Welland, M. E.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
[CrossRef]

Wu, X. P.

Zhang, Q. C.

Zinoviev, K.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005).
[CrossRef]

D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Rev. Sci. Instrum. (2)

S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009).
[CrossRef] [PubMed]

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
[CrossRef]

Science (1)

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997).
[CrossRef]

Other (1)

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the FTMS experimental setup; (b) microscopic image of the FTMS structure, with the nanotip on the left; (c) microscopic image of the FTMS structure transmitting light.

Fig. 2
Fig. 2

(a) Experimental displacement curve of the FTMS measured at d < 5 μ m , in comparison with the fundamental-mode power distribution in the SMF calculated with Eq. (1). (The SMF used has a mode-field radius of w = 4.2 μ m at 980 nm.) (b) Experimental displacement curves measured at different d values. (The y axis is normalized by the maximal received power at r = 0 for different d values.) The inset shows the light intensity received at the central position ( r = 0 ) as a function of d. (The y axis of inset is normalized by the maximal received power at r = 0 , d 5 μ m .)

Fig. 3
Fig. 3

(a) Frequency response of FTMS to vibrations driven by a 5 V, 350 Hz sinusoidal wave (inset, time-domain response). (b) Frequency response of FTMS to vibrations driven by a 0.2 V, 740 Hz sinusoidal wave (inset, detected vibration power as a function of the drive-signal amplitude).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I r = I 0   exp ( 2 r 2 / w 2 ) ,

Metrics