Abstract

Laser operation of a composite ceramic Er:YAG rod is demonstrated at 1645nm with a slope efficiency of 56.9% under resonant pumping at 1532.3nm. This is believed to be the first reported composite ceramic Er:YAG laser and also the first reported use of a tape cast technique for producing laser ceramics.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Hanson, Appl. Phys. Lett. 66, 3549 (1995).
    [CrossRef]
  2. D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, Opt. Express 13, 6212 (2005).
    [CrossRef] [PubMed]
  3. A. Ikesue and Y. L. Aung, Nat. Photonics 2, 721 (2008).
    [CrossRef]
  4. Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
    [CrossRef]
  5. R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, Johns Hopkins APL Tech. Dig. 26, 46 (2005).
  6. K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
    [CrossRef]
  7. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
    [CrossRef]
  8. D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
    [CrossRef]
  9. D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 87, 121101 (2005).
    [CrossRef]
  10. D. Kracht, R. Wilhelm, M. Frede, K. Dupré, and L. Ackermann, Opt. Express 13, 10140 (2005).
    [CrossRef] [PubMed]
  11. D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
    [CrossRef]

2008 (1)

A. Ikesue and Y. L. Aung, Nat. Photonics 2, 721 (2008).
[CrossRef]

2005 (6)

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, Opt. Express 13, 6212 (2005).
[CrossRef] [PubMed]

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

D. Kracht, R. Wilhelm, M. Frede, K. Dupré, and L. Ackermann, Opt. Express 13, 10140 (2005).
[CrossRef] [PubMed]

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, Johns Hopkins APL Tech. Dig. 26, 46 (2005).

2000 (1)

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

1995 (1)

F. Hanson, Appl. Phys. Lett. 66, 3549 (1995).
[CrossRef]

1994 (1)

K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Ackermann, L.

Aung, Y. L.

A. Ikesue and Y. L. Aung, Nat. Photonics 2, 721 (2008).
[CrossRef]

Bargeron, C. B.

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, Johns Hopkins APL Tech. Dig. 26, 46 (2005).

Birnbaum, M.

K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
[CrossRef]

Bonney-Ray, J. A.

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, Johns Hopkins APL Tech. Dig. 26, 46 (2005).

Chicklis, E. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Dubinskii, M.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

Dupré, K.

Fallnich, C.

Findlay, D.

D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Francis, M. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Frede, M.

Frukacz, Z.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Garbuzov, D.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

Gietka, A.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Green, W. R.

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, Johns Hopkins APL Tech. Dig. 26, 46 (2005).

Hanson, F.

F. Hanson, Appl. Phys. Lett. 66, 3549 (1995).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. L. Aung, Nat. Photonics 2, 721 (2008).
[CrossRef]

Jedrzejewski, K.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Kisielewski, J.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Konves, J. R.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Kopszynski, K.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Kracht, D.

Kudryashov, I.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

Kwasny, M.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Lukasiewica, T.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

McCally, R. L.

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, Johns Hopkins APL Tech. Dig. 26, 46 (2005).

Mierczyk, Z.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Setzler, S. D.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Spariosu, K.

K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
[CrossRef]

Stepien, R.

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Wilhelm, R.

Young, Y. E.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

F. Hanson, Appl. Phys. Lett. 66, 3549 (1995).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

J. Alloys Compd. (1)

Z. Mierczyk, M. Kwasny, K. Kopszynski, A. Gietka, T. Lukasiewica, Z. Frukacz, J. Kisielewski, R. Stepien, and K. Jedrzejewski, J. Alloys Compd. 300, 398 (2000).
[CrossRef]

Johns Hopkins APL Tech. Dig. (1)

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, Johns Hopkins APL Tech. Dig. 26, 46 (2005).

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, Nat. Photonics 2, 721 (2008).
[CrossRef]

Opt. Express (2)

Phys. Lett. (1)

D. Findlay and R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Er 3 + : YAG I 11 2 4 I 13 2 4 ( 1600 1670 nm ) fluorescence intensity profile as an indication of dopant distribution in a composite slab with dimensions of 4 mm × 10 mm × 62 mm pumped from the undoped slab end (shown by arrow). The 0.5% Er segment is on the left, and the undoped segment is on the right. The picture was taken with a Si-based camera phosphorus-sensitized for 1.4 1.7 μ m . Blurred transition edges are due to light diffusion in the IR-sensitizing phosphorus coating. Clearly seen is the Er 3 + fluorescence intensity reduction due to pump beam attenuation in the doped segments and no fluorescence in the undoped one. Also seen, due to scattered IR light, is the contour of the composite Er 3 + : YAG slab. The curve at the bottom indicates the fluorescence intensity distribution on a linear scale.

Fig. 2
Fig. 2

Simplified layout of the laser setup used for testing the composite ceramic Er:YAG rod.

Fig. 3
Fig. 3

Laser output versus absorbed pump power (quasi-cw) for the 62 mm (pure YAG, 0.25% Er:YAG, 0.5% Er:YAG) composite ceramic rod. Maximum slope efficiency of 56.9% was achieved with the output coupler reflectivity of 85% (red dashed line). Slope efficiencies are calculated from the dashed lines.

Fig. 4
Fig. 4

Findlay–Clay plot of the laser data obtained from the laser output versus absorbed pump power plot (Fig. 3).

Metrics