Abstract

It has been shown that frequency domain optical coherence tomography (FD-OCT) systems achieve higher sensitivities compared to time domain optical coherence tomography (OCT) systems. However, the obscure object structure due to the mirror image generated by the Fourier transform is one of the remaining issues in the FD-OCT. We designed and developed what we believe to be a novel full range FD-OCT system that we refer to as the dual detection full range frequency domain optical coherence tomography (DD-FDOCT) that enables the instantaneous retrieval of quadrature components of the complex interferometric signal. The DD-FDOCT system enables full range imaging without loss of speed, and it may be less sensitive to phase error generated by involuntary movements of the subject compared to the other established full range OCT systems, because it uses two signals with a phase difference of π/2 obtained simultaneously from two detection arms to remove mirror images at all depths.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Leitgeb, C. Hitzenberer, and A. Fercher, Opt. Express 11, 889 (2003).
    [CrossRef] [PubMed]
  2. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, and T. Bajraszewski, J. Biomed. Opt. 7, 457 (2002).
    [CrossRef] [PubMed]
  3. E. Leith and J. Upatnieks, J. Opt. Soc. Am. 54, 1295 (1964).
    [CrossRef]
  4. J. Arocena, T. Rothwell, and M. Shegelski, Micron 36, 23 (2005).
    [CrossRef]
  5. K. Lee and J. P. Rolland, Opt. Lett. 33, 1696 (2008).
    [CrossRef] [PubMed]
  6. S. Murali, K. S. Lee, and J. P. Rolland, Opt. Express 15, 15854 (2007).
    [CrossRef] [PubMed]
  7. S. Murali, K. P. Thompson, and J. P. Rolland, Opt. Lett. 34, 145 (2009).
    [CrossRef] [PubMed]
  8. R. Leitgeb, C. Hitzenberger, A. Fercher, and T. Bajraszewski, Opt. Lett. 28, 2201 (2003).
    [CrossRef] [PubMed]
  9. M. Sarunic, M. Choma, C. Yang, and J. Izatt, Opt. Express 13, 957 (2005).
    [CrossRef] [PubMed]
  10. S. Yun, G. Tearney, J. de Boer, and B. Bouma, Opt. Express 12, 4822 (2004).
    [CrossRef] [PubMed]
  11. J. Zhang, J. Nelson, and Z. Chen, Opt. Lett. 30, 147 (2005).
    [CrossRef] [PubMed]
  12. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, Appl. Opt. 45, 1861 (2006).
    [CrossRef] [PubMed]
  13. R. Wang, Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  14. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, J. Opt. Soc. Am. B 9, 903 (1992).
    [CrossRef]
  15. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).
    [CrossRef] [PubMed]
  16. M. Jeon, J. Zhang, Q. Wang, and Z. Chen, Opt. Express 16, 2547 (2008).
    [CrossRef] [PubMed]

2009

2008

2007

2006

2005

2004

2003

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, and T. Bajraszewski, J. Biomed. Opt. 7, 457 (2002).
[CrossRef] [PubMed]

1992

1964

Aoki, G.

Arocena, J.

J. Arocena, T. Rothwell, and M. Shegelski, Micron 36, 23 (2005).
[CrossRef]

Bajraszewski, T.

R. Leitgeb, C. Hitzenberger, A. Fercher, and T. Bajraszewski, Opt. Lett. 28, 2201 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, and T. Bajraszewski, J. Biomed. Opt. 7, 457 (2002).
[CrossRef] [PubMed]

Bouma, B.

Chen, Z.

Choma, M.

de Boer, J.

Endo, T.

Fercher, A.

Fujimoto, J. G.

Hee, M. R.

Hitzenberer, C.

Hitzenberger, C.

Huang, D.

Huber, R.

Itoh, M.

Izatt, J.

Jeon, M.

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, and T. Bajraszewski, J. Biomed. Opt. 7, 457 (2002).
[CrossRef] [PubMed]

Lee, K.

Lee, K. S.

Leitgeb, R.

Leith, E.

Makita, S.

Murali, S.

Nelson, J.

Rolland, J. P.

Rothwell, T.

J. Arocena, T. Rothwell, and M. Shegelski, Micron 36, 23 (2005).
[CrossRef]

Sarunic, M.

Shegelski, M.

J. Arocena, T. Rothwell, and M. Shegelski, Micron 36, 23 (2005).
[CrossRef]

Swanson, E. A.

Tearney, G.

Thompson, K. P.

Upatnieks, J.

Wang, Q.

Wang, R.

R. Wang, Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Wojtkowski, M.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, and T. Bajraszewski, J. Biomed. Opt. 7, 457 (2002).
[CrossRef] [PubMed]

Yang, C.

Yasuno, Y.

Yatagai, T.

Yun, S.

Zhang, J.

Appl. Opt.

Appl. Phys. Lett.

R. Wang, Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

J. Biomed. Opt.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, and T. Bajraszewski, J. Biomed. Opt. 7, 457 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Micron

J. Arocena, T. Rothwell, and M. Shegelski, Micron 36, 23 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Layout of the dual detection full range swept source based FD-OCT using a broadband FDML laser: NPBS, nonpolarizing beam splitter; COL, collimator; M, mirror; Gal, galvanometer; MZI, Mach–Zehnder interferometer; OBJ, objective; DET, detector. (b) Spectrum of the FDML laser measured with an optical spectrum analyzer. (c) Adjustment of NPBS2 to obtain π / 2 phase shift between the two interference signals.

Fig. 2
Fig. 2

(a) Two interference signals generated from the dual detection FD-OCT. (b) The zoom-in signals in the narrow time interval showing a π / 2 phase difference between the two signals. A-scan depth profiles of the single reflector in the sample arm (c) with single detection and (d) with suppression of the complex conjugate peak of 35 dB in the DD-FDOCT.

Fig. 3
Fig. 3

Biological imaging (in vivo human finger): (a) real and mirror images overlapped OCT image using a conventional FD-OCT system; (b) mirror image removed OCT image using the DD-FDOCT system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ̃ ( ω ) = I ( ω ) + i I ( ω , Δ ϕ = π / 2 ) .

Metrics