Abstract

A wavelength-coded multifocal microscope incorporating multiplexed and wavelength-coded holographic gratings to generate wavelength-selective multifocal planes is presented. The focal planes are longitudinally spaced on the object plane, and each focal plane is probed by a designated wavelength. The recording of the multiplexed gratings takes place at a single wavelength by utilizing the Bragg degeneracy property; thus the maximum sensitive wavelength of blue 488nm is used for recording, but the device is operated at a broad wavelength band of interest, all the way to red 633nm. We present the design, implementation, and experimental image data demonstrating this microscope’s ability to obtain biological tissue structures simultaneously at different focal planes using broadband illumination by LEDs.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard and A. Choudhury, Opt. Acta 24, 1051 (1977).
    [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  3. Y. Luo, L. J. Arauz, J. E. Castillo, J. K. Barton, and R. K. Kostuk, Appl. Opt. 46, 8291 (2007).
    [CrossRef] [PubMed]
  4. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, Opt. Lett. 30, 1803 (2005).
    [CrossRef] [PubMed]
  5. J. E. Jureller, H. Y. Kim, and N. F. Scherer, Opt. Express 14, 3406 (2006).
    [CrossRef] [PubMed]
  6. G. Indebetouw and P. Klysubun, Appl. Phys. Lett. 75, 2017 (1999).
    [CrossRef]
  7. M. P. Shih, H. S. Chen, and E. N. Leith, Opt. Lett. 24, 52 (1999).
    [CrossRef]
  8. L. Yu and M. K. Kim, Opt. Lett. 30, 2092 (2005).
    [CrossRef] [PubMed]
  9. J. Rosen and G. Brooker Kim, Nat. Photonics 2, 190 (2008).
    [CrossRef]
  10. W. Liu, D. Psaltis, and G. Barbastathis, Opt. Lett. 27, 854 (2002).
    [CrossRef]
  11. Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, Opt. Lett. 33, 2098 (2008).
    [CrossRef] [PubMed]
  12. P. C. Lin, P. Sun, L. Zhu, and Y. Fainman, Appl. Opt. 37, 6764 (1998).
    [CrossRef]
  13. H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).
  14. G. Barbastathis, M. Levene, and D. Psaltis, Appl. Opt. 35, 2403 (1996).
    [CrossRef] [PubMed]
  15. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, Opt. Lett. 33, 566 (2008).
    [CrossRef] [PubMed]
  16. Y. Tomita, N. Suzuki, and K. Chikama, Opt. Express 14, 12712 (2006).
    [CrossRef] [PubMed]

2008

2007

2006

2005

2002

1999

G. Indebetouw and P. Klysubun, Appl. Phys. Lett. 75, 2017 (1999).
[CrossRef]

M. P. Shih, H. S. Chen, and E. N. Leith, Opt. Lett. 24, 52 (1999).
[CrossRef]

1998

1996

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

1977

C. J. R. Sheppard and A. Choudhury, Opt. Acta 24, 1051 (1977).
[CrossRef]

Arauz, L. J.

Barbastathis, G.

Barton, J. K.

Brenner, M.

Brooker Kim, G.

J. Rosen and G. Brooker Kim, Nat. Photonics 2, 190 (2008).
[CrossRef]

Castillo, J. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Chen, H. S.

Chen, Z.

Chikama, K.

Choudhury, A.

C. J. R. Sheppard and A. Choudhury, Opt. Acta 24, 1051 (1977).
[CrossRef]

Coufal, H.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Fainman, Y.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gelsinger, P. J.

Gelsinger-Austin, P. J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Guo, S.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hesselink, L.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Indebetouw, G.

G. Indebetouw and P. Klysubun, Appl. Phys. Lett. 75, 2017 (1999).
[CrossRef]

Jureller, J. E.

Kim, H. Y.

Kim, M. K.

Klysubun, P.

G. Indebetouw and P. Klysubun, Appl. Phys. Lett. 75, 2017 (1999).
[CrossRef]

Kostuk, R. K.

Leith, E. N.

Levene, M.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Lin, P. C.

Liu, W.

Luo, Y.

Mukai, D.

Psaltis, D.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Rosen, J.

J. Rosen and G. Brooker Kim, Nat. Photonics 2, 190 (2008).
[CrossRef]

Scherer, N. F.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Sheppard, C. J. R.

C. J. R. Sheppard and A. Choudhury, Opt. Acta 24, 1051 (1977).
[CrossRef]

Shih, M. P.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Sun, P.

Suzuki, N.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Tomita, Y.

Watson, J. M.

Xie, T.

Yu, L.

Zhu, L.

Appl. Opt.

Appl. Phys. Lett.

G. Indebetouw and P. Klysubun, Appl. Phys. Lett. 75, 2017 (1999).
[CrossRef]

Nat. Photonics

J. Rosen and G. Brooker Kim, Nat. Photonics 2, 190 (2008).
[CrossRef]

Opt. Acta

C. J. R. Sheppard and A. Choudhury, Opt. Acta 24, 1051 (1977).
[CrossRef]

Opt. Express

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Other

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the wavelength-coded multifocal microscope. Multiple focal planes within the volume object are longitudinally spaced by Δ z . Each focal plane is coded for a specific wavelength; the corresponding field of view is observable only under illumination by its own designated wavelength. The system illumincation can be placed either in transmission or reflection mode.

Fig. 2
Fig. 2

Recording setup of wavelength-coded holographic gratings. The position of the point source is controlled by lens (L1) translated relative to a fixed lens (L2). The hologram is mounted on a rotation stage. The angle of the hologram and the angle of the signal beam are changed by Δ θ v and Δ θ s between exposures, respectively, to maintain the same incident beam angle while using different wavelengths for reconstruction.

Fig. 3
Fig. 3

k-sphere diagram for the grating recorded in λ B = 488 nm and probed in λ R = 633 nm . The grating vector K g 1 is perpendicular to the hologram normal. (b) Resultant k-sphere diagram of two multiplexed wavelength-coded gratings. The reference beams share a common axis, and the two gratings are probed at 633 and 488 nm , respectively. The two Bragg-matched diffracted beams are separated by 2°, and K g 2 is off-perpendicular to the hologram normal.

Fig. 4
Fig. 4

Detailed image of an Air Force Resolution Chart obtained by the wavelength-coded multifocal microscope.

Fig. 5
Fig. 5

(a) Two depth-resolved images of an onion obtained with wavelength-coded multifocal microscopy using both blue and red LEDs for illumination. (b) One of the two depth-resolved images obtained with wavelength-coded multifocal microscopy when the blue LED is on and red one is off. (c) One of the two depth-resolved images obtained with wavelength-coded multifocal microscopy when the red LED is on and blue one is off.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ s , B 1 = ϕ 1 cos 1 [ λ B λ R cos ( ϕ 1 θ s , R 1 ) ] ,
Δ θ v = θ s , R 1 θ s , B 1 .

Metrics