Abstract

All-optical conversion from phase-modulated signals to intensity-modulated signals is theoretically demonstrated in semiconductor optical amplifiers (SOAs). Large-signal and small-signal calculations show significant conversion responses appearing as a result of even minute reflections at the end mirrors of the SOA. It is discussed how reflected phase-modulated signals can lead to interference resulting in intensity fluctuations that are amplified by the gain in a SOA. The effect can be utilized for deliberate conversion between optical modulation formats.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).
    [CrossRef]
  2. M. Premaratne, A. Lowery, Z. Ahmed, and D. Novak, IEEE J. Quantum Electron. 3, 290 (1997).
    [CrossRef]
  3. C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
    [CrossRef]
  4. C. Chow, C. Wong, and H. Tsang, J. Lightwave Technol. 22, 2386 (2004).
    [CrossRef]
  5. P. Shen, P. D. N. J. Gomes, W. Shillue, P. Muggard, and B. Ellison, in International Topical Meeting on Microwave Photonics (2003), pp. 189.
  6. B. Tromborg, H. E. Lassen, and H. Olesen, IEEE J. Quantum Electron. 30, 939 (1994).
    [CrossRef]
  7. H. Adachihara, O. Hess, R. Indik, and J. V. Moloney, J. Opt. Soc. Am. B 10, 496 (1993).
    [CrossRef]
  8. W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed. (Academic, 1992).
  9. J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
    [CrossRef]
  10. S. Blaaberg and J. Mørk, IEEE J. Quantum Electron. 45, 950 (2009).
    [CrossRef]

2009 (1)

S. Blaaberg and J. Mørk, IEEE J. Quantum Electron. 45, 950 (2009).
[CrossRef]

2006 (1)

C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

2004 (1)

1998 (1)

J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
[CrossRef]

1997 (1)

M. Premaratne, A. Lowery, Z. Ahmed, and D. Novak, IEEE J. Quantum Electron. 3, 290 (1997).
[CrossRef]

1994 (1)

B. Tromborg, H. E. Lassen, and H. Olesen, IEEE J. Quantum Electron. 30, 939 (1994).
[CrossRef]

1993 (1)

1982 (1)

C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

Adachihara, H.

Ahmed, Z.

M. Premaratne, A. Lowery, Z. Ahmed, and D. Novak, IEEE J. Quantum Electron. 3, 290 (1997).
[CrossRef]

Ames, W. F.

W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed. (Academic, 1992).

Blaaberg, S.

S. Blaaberg and J. Mørk, IEEE J. Quantum Electron. 45, 950 (2009).
[CrossRef]

Chow, C.

Ellison, B.

P. Shen, P. D. N. J. Gomes, W. Shillue, P. Muggard, and B. Ellison, in International Topical Meeting on Microwave Photonics (2003), pp. 189.

Gavrrielides, A.

J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
[CrossRef]

Gomes, P. D. N. J.

P. Shen, P. D. N. J. Gomes, W. Shillue, P. Muggard, and B. Ellison, in International Topical Meeting on Microwave Photonics (2003), pp. 189.

Henry, C. H.

C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

Hess, O.

Hohl, A.

J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
[CrossRef]

Indik, R.

Kalmus, R.

J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
[CrossRef]

Kovanis, V.

J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
[CrossRef]

Lassen, H. E.

B. Tromborg, H. E. Lassen, and H. Olesen, IEEE J. Quantum Electron. 30, 939 (1994).
[CrossRef]

Lowery, A.

M. Premaratne, A. Lowery, Z. Ahmed, and D. Novak, IEEE J. Quantum Electron. 3, 290 (1997).
[CrossRef]

Moloney, J. V.

J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
[CrossRef]

H. Adachihara, O. Hess, R. Indik, and J. V. Moloney, J. Opt. Soc. Am. B 10, 496 (1993).
[CrossRef]

Mørk, J.

S. Blaaberg and J. Mørk, IEEE J. Quantum Electron. 45, 950 (2009).
[CrossRef]

Muggard, P.

P. Shen, P. D. N. J. Gomes, W. Shillue, P. Muggard, and B. Ellison, in International Topical Meeting on Microwave Photonics (2003), pp. 189.

Novak, D.

M. Premaratne, A. Lowery, Z. Ahmed, and D. Novak, IEEE J. Quantum Electron. 3, 290 (1997).
[CrossRef]

Olesen, H.

B. Tromborg, H. E. Lassen, and H. Olesen, IEEE J. Quantum Electron. 30, 939 (1994).
[CrossRef]

Premaratne, M.

M. Premaratne, A. Lowery, Z. Ahmed, and D. Novak, IEEE J. Quantum Electron. 3, 290 (1997).
[CrossRef]

Shen, P.

P. Shen, P. D. N. J. Gomes, W. Shillue, P. Muggard, and B. Ellison, in International Topical Meeting on Microwave Photonics (2003), pp. 189.

Shillue, W.

P. Shen, P. D. N. J. Gomes, W. Shillue, P. Muggard, and B. Ellison, in International Topical Meeting on Microwave Photonics (2003), pp. 189.

Su, Y.

C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

Tian, L. L. X.

C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

Tian, Y.

C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

Tromborg, B.

B. Tromborg, H. E. Lassen, and H. Olesen, IEEE J. Quantum Electron. 30, 939 (1994).
[CrossRef]

Tsang, H.

White, J. K.

J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
[CrossRef]

Wong, C.

Xu, X.

C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

Yan, C.

C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

Yi, L.

C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

IEEE J. Quantum Electron. (5)

C. H. Henry, IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

M. Premaratne, A. Lowery, Z. Ahmed, and D. Novak, IEEE J. Quantum Electron. 3, 290 (1997).
[CrossRef]

B. Tromborg, H. E. Lassen, and H. Olesen, IEEE J. Quantum Electron. 30, 939 (1994).
[CrossRef]

J. K. White, J. V. Moloney, A. Gavrrielides, V. Kovanis, A. Hohl, and R. Kalmus, IEEE J. Quantum Electron. 34, 1469 (1998).
[CrossRef]

S. Blaaberg and J. Mørk, IEEE J. Quantum Electron. 45, 950 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Yan, Y. Su, L. Yi, L. L. X. Tian, X. Xu, and Y. Tian, IEEE Photon. Technol. Lett. 18, 2368 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Other (2)

W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed. (Academic, 1992).

P. Shen, P. D. N. J. Gomes, W. Shillue, P. Muggard, and B. Ellison, in International Topical Meeting on Microwave Photonics (2003), pp. 189.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Output power as a function of time for a PM input signal for different power reflectivities R. Here the case for an incident 10 GHz phase pulse train consisting of Gaussian phase pulses with peak value π and a FWHM of 50 ps is shown. The cw chip gain is approximately 23 dB and the input power is 0.05 mW.

Fig. 2
Fig. 2

Output power as a function of time for different magnitudes of the chip gain, G. With fixed reflectivity R = 5 × 10 3 , G is varied by varying the pump current. The input signal is the same as in Fig. 1.

Fig. 3
Fig. 3

(a) Output power as a function of time for an input 3 GHz phase pulse train consisting of Gaussian phase pulses with peak value π and FWHM 41 ps. The reflectivity is R = 10 3 , the chip gain is approximately 20 dB, and the input power is 0.05 mW. (b) The corresponding time evolution of the carrier density N.

Fig. 4
Fig. 4

Small-signal power response (solid line) due to phase modulation of the input signal. The crosses denote large-signal calculations where the input phase is modulated as θ ( t ) = Δ θ   cos ( Ω t ) , where Δ θ = π / 12 and Ω is the modulation frequency. The reflectivity is R = 10 4 , the cw chip gain is 15 dB, and the input power is 0.5 mW.

Fig. 5
Fig. 5

Output power as a function of time for different values of α. The reflectivity is R = 10 3 , while the input signal and the pump current is the same as in Fig. 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z E ± ( z , t ) ± 1 v g t E ± ( z , t ) 1 2 [ ( ( 1 + j α ) g ( z , t ) α i ) ] E ± ( z , t ) = 0.
t N = J N τ c 2 ϵ 0 n r c g A ω ( | E + | 2 + | E | 2 ) ,

Metrics